huplion的专栏

IMUDGES BACK-END

Android:Can't create handler inside thread that has not called Looper.prepare()

这种情况一般发生在子线程回调时更新了主线程UI的情况,解决方式很简单 假设原来的回调是这样的 private void confidenceCallback(final float out){ evSpeechWakeListener.confidence(out); ...

2018-01-31 21:41:59

阅读数 103

评论数 0

Android:Your APP_BUILD_SCRIPT points to an unknown file

博主在更换Android Studio的JNI的目录之后发生了这个bug。 解决方法: 删除你的jni的临时文件夹,然后rebuild

2018-01-30 17:43:49

阅读数 620

评论数 0

译:《Dropout: A Simple Way to Prevent Neural Networks from Overfitting》

今天看了CS231n关于dropout部分的讲述,不是很清晰,拿来一篇关于Dropout的代表性文章来读一读,体会一下。 论文原文下载链接:Dropout: A Simple Way to Prevent Neural Networks from Overfitting 摘要 在具有大量参...

2018-01-30 17:31:57

阅读数 1876

评论数 0

斯坦福cs231n学习笔记(11)------神经网络训练细节(梯度下降算法大总结/SGD/Momentum/AdaGrad/RMSProp/Adam/牛顿法)

神经网络训练细节系列笔记: 神经网络训练细节(激活函数) 神经网络训练细节(数据预处理、权重初始化) 神经网络训练细节(Batch Normalization) 神经网络训练细节(训练过程,超参数优化) 通过学习,我们知道,因为训练神经网络有个过程: Sample 获得一批数据; Fo...

2018-01-28 00:01:51

阅读数 18412

评论数 5

Python:Numpy 求平均向量

>>> import numpy as np >>> a = np.array([[1, 2, 3], [3, 1, 2]]) >>> b = np.array([[5, 2, 6], [5, 1, 2]]) >>> a ar...

2018-01-27 17:29:36

阅读数 3831

评论数 0

Python:画图

import matplotlib.pyplot as plt from numpy import * x = array([0, 0, 1, 1, 2, 4, 2, 1, 2, 0]).reshape(-1, 1) y = array([1, 1, 1, 2, 2, 2, 2, 3, 2, 0...

2018-01-27 17:29:11

阅读数 273

评论数 0

Andoid:crystax-ndk 解压目录

博主的机器是Windows10 x64的 下载了 crystax-ndk-10.3.2-windows-x86_64版本(如图) 自动解压至以下目录(如图) C:\Users\用户名\AppData\Local\VirtualStore\Windows\SysWOW64\cryst...

2018-01-27 17:28:57

阅读数 420

评论数 0

Andoid:crystax-ndk 出现 ndk-build.cmd inished with non-zero exit value 2 问题

在Android的NDK开发中,很容易遇到这个问题。 遇到这个问题很麻烦的地方是只能知道错误码是2,而不知道为什么错了。所以要知道错误的原因是解决问题的很重要的一步。 这时我们需要手动进行编译。 打开命令行,工作目录切换到 NDK的目录下。(如图) 找到项目的jni目录...

2018-01-27 17:28:41

阅读数 241

评论数 0

Andoid:idea gradle 支持v2签名方式

0x01 问题 如图,我的IDEA里面的项目的gradle的版本较低 生成 签名的APK的时候,无法选择v2签名方式。 0x02 解决方案 升级gradle版本 只需要修改两个配置文件 打开这个配置文件 修改最后一行 从原来的 #Mon De...

2018-01-27 17:28:22

阅读数 442

评论数 0

Android NDK:JNI 数组的输入输出

假设native方法如下(以float类型为例): public static native float[] featureExtract(float[] input); 对应的C++代码如下: extern "C" JNIEXPORT jfloatArra...

2018-01-27 17:26:05

阅读数 839

评论数 1

斯坦福cs231n学习笔记(10)------神经网络训练细节(训练过程,超参数优化)

神经网络训练细节系列笔记: 神经网络训练细节(激活函数) 神经网络训练细节(数据预处理、权重初始化) 神经网络训练细节(Batch Normalization) 这一篇将介绍如何在训练中调整学习速率,以及对超参数优化的问题。 一、Babysitting the learning pr...

2018-01-22 23:16:53

阅读数 4447

评论数 2

斯坦福cs231n学习笔记(9)------神经网络训练细节(Batch Normalization)

神经网络训练细节系列笔记: 神经网络训练细节(激活函数) 神经网络训练细节(数据预处理、权重初始化) 神经网络训练细节(训练过程,超参数优化) 这一篇介绍很NB的BN(Batch Normalization): Batch Normalization是由Loffe和Szegedy在201...

2018-01-21 18:59:19

阅读数 837

评论数 0

斯坦福cs231n学习笔记(8)------神经网络训练细节(数据预处理、权重初始化)

神经网络训练细节系列笔记: 神经网络训练细节(激活函数) 神经网络训练细节(Batch Normalization) 神经网络训练细节(训练过程,超参数优化) 这一篇,我们将继续介绍神经网络训练细节。 一、Data Preprocessing(数据预处理) 如图是原始数据,数据...

2018-01-21 18:56:32

阅读数 5309

评论数 1

斯坦福cs231n学习笔记(7)------神经网络训练细节(激活函数)

神经网络训练细节系列笔记: 神经网络训练细节(Batch Normalization) 神经网络训练细节(数据预处理、权重初始化) 神经网络训练细节(训练过程,超参数优化) 上一篇斯坦福cs231n学习笔记(6)——神经网络初步从生物神经元角度简单的介绍了神经网络的结构,这一篇将着重介绍神...

2018-01-21 18:49:36

阅读数 2374

评论数 0

斯坦福cs231n学习笔记(6)------神经网络初步

从这一篇开始,我们将进入神经网络学习中。 一、起源 说到神经网络,必然先从生物神经元的结构说起: 左边细胞主体(cell body),它的周围有许多突触(dendrites),突触(dendrites)与周围的神经元相连,所有实际上这个神经元周围还有很多的神经元,突触(dendrit...

2018-01-16 23:34:03

阅读数 407

评论数 0

斯坦福cs231n学习笔记(5)------反向传播算法(BP)

一、前言 在前几篇文章中,我们学习到如何在训练集上设置权重,并由此计算出损失(loss),其中loss是有两部分组成,分别是数据损失项和正则化损失项。我们最终想要得到损失函数关于权重矩阵w的梯度表达式,然后进行优化。我们采用梯度下降算法,进行迭代运算,计算梯度进行权值的更新,并一直循环执行这个操...

2018-01-15 22:05:20

阅读数 1899

评论数 1

斯坦福cs231n学习笔记(4)------线性分类器最优化

在上一篇文章中,我们介绍了求解全部损失的两种方式和过程: 也就是说,loss是有两部分组成的,一部分是数据损失项,另一部分是正则项,而正则化只作用于w,不作用于数据。损失值反映了分类器工作的好坏,若损失值很低,说明我们对训练集的分类做的很好。那么如何求到最小化损失的w,策略就是使用梯度下降的...

2018-01-14 23:16:14

阅读数 229

评论数 0

斯坦福cs231n学习笔记(3)------线性分类器损失函数

在上一篇中,我们介绍了线性分类器的结构和具体原理,那么这篇我们将介绍如何定义损失函数来衡量在训练数据时的“不理想”程度,进而在这些随机权重中找到比较理想的权重,这也是线性分类器最优化的过程。 如上图所示,不同的权重在不同的图像上的作用效果可好可坏。上图中的猫的权重是2.9,效果不是很好,说明...

2018-01-14 16:42:44

阅读数 496

评论数 0

斯坦福cs231n学习笔记(2)------数据驱动的图像分类方式:K最近邻与线性分类器

从上一篇的Computer Vision的历史与回顾,在进行图像识别的时候,Data作为最重要的驱动力,这一篇我们将介绍数据驱动下的两种图像分类的主流算法。 图像分类实质上就是“模式匹配”,早期我们进行图像分类,是利用两张图像的像素值的不同,进而计算图像上的每一块的像素值,通过不同的计算方式,对...

2018-01-12 15:31:01

阅读数 510

评论数 0

斯坦福cs231n学习笔记(1)------Computer Vision的历史与回顾

研究生考试结束,终于能有一大块系统的时间来学习神经网络,一直对这块的知识很感兴趣,嘿嘿,兴趣是个好东西。准备着手写一系列关于学习FeiFeiLi的计算机视觉&深度学习课程的总结及心得,分享给大家,我们一起进步! 介绍一下计算机视觉的历史和回顾,Computer Vision,计算机视觉是...

2018-01-09 15:59:04

阅读数 417

评论数 3

提示
确定要删除当前文章?
取消 删除
关闭
关闭