关于api-ms-win-crt-runtimel1-1-0.dll缺失的解决方案

关于api-ms-win-crt-runtimel1-1-0.dll缺失的解决方案

目录

有时我们在使用文件程序的时候,碰到一些问题,提示dll文件缺失,例如标题中的。
错误提示
有些情况下载这些dll文件补上就行,有些则不行,像标题这种情况,则需要安装一个小程序。

安装VC redit.exe程序解决

是VC的一个程序:VC redit.exe
链接:https://www.microsoft.com/zh-cn/download/details.aspx?id=48145

下载时选择x86还是x64的根据自己系统的需求,安装成功就可以了。

但是对于有些电脑系统,还会出现这些情况,提示安装失败:
VC redit.exe 设置失败

查看一下日志文件:

VC redit.exe日志文件

可以看到是更新程序出了问题,我们查看一下系统的事件,
右击计算机->管理->左侧的 事件查看器->Windows日志->Setup,如下

事件查看器-Windows 日志

我们查看他的详细信息,发现是有一个更新打不上:

WUSA事件详细信息

对,就是KB2999226这个补丁程序。

安装KB2999226补丁程序

补丁码:KB2999226
链接:https://www.microsoft.com/zh-cn/download/details.aspx?id=49077
这个链接是针对win7的,若想要别的,直接在微软官网搜索补丁号即可。

有些时候系统无法更新,关于系统无法更新,若有这个问题,后文叙述。
我们安装的时候可能会发现还是安装不上,查了一下这个补丁程序的系统要求:

KB2999226系统要求

系统要求是windows7 SP1。估计大多数的问题就在这了,MSU KB2999226不能安装的原因就是系统不是Win7 SP1,只有更新到SP1才能更新这个补丁。所以把系统更新到SP1即可。

更新到Win7 SP1

现在把系统更新到SP1。
Win7 SP1 的补丁码是 KB976932
链接:https://www.microsoft.com/zh-cn/download/details.aspx?id=5842

有时候会发现补丁安装失败,如果真的出现了,那就这样做吧:进系统后,关闭安全程序,最好设置不开机启动,等到安装完成后,拔网线重启,然后就马到功成了。

这时,我们就能正确安装了,对那个补丁MSU的补丁要不要专门安装一次也无所谓。然后再次安装VC redit.exe就行了。

无法安装更新解决方案-删除目录:

1.打开cmd,关闭wuauserv服务,执行

net stop wuauserv

2.打开windows目录,或者直接win+R 运行 %windir%打开目录
3.找到一个文件夹SoftwareDistribution,删掉或者改名都行,这是更新程序使用的文件夹
4.开启wuauserv服务,执行

net start  wuauserv

综述:

1. 检查系统是不是win7 SP1,若不是,打Kb976932补丁
2. 安装MSU的KB2999226补丁
3. 若无法更新,删除目录解决
4. 再次安装VC redit.exe


在无人驾驶中,交通标志识别是一项重要的任务。本项目以美国交通标志数据集LISA为训练对象,采用YOLOv3目标检测方法实现实时交通标志识别。 具体项目过程包括包括:安装Darknet、下载LISA交通标志数据集、数据集格式转换、修改配置文件、训练LISA数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 YOLOv3基于深度学习,可以实时地进行端到端的目标检测,以速度快见长。本课程将手把手地教大家使用YOLOv3实现交通标志的多目标检测。本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入学习和探究。 除本课程《YOLOv3目标检测实战:交通标志识别》外,本人推出了有关YOLOv3目标检测系列课程,请持续关注该系列的其它课程视频,包括: 《YOLOv3目标检测实战:训练自己的数据集》 《YOLOv3目标检测:原理与源码解析》 《YOLOv3目标检测:网络模型改进方法》 另一门课程《YOLOv3目标检测实战:训练自己的数据集》主要是介绍如何训练自己标注的数据集。而本课程的区别主要在于学习对已标注数据集的格式转换,即把LISA数据集从csv格式转换成YOLOv3所需要的PASCAL VOC格式和YOLO格式。本课程提供数据集格式转换的Python代码。 请大家关注以上课程,并选择学习。 下图是使用YOLOv3进行交通标志识别的测试结果
Linux创始人Linus Torvalds有一句名言:Talk is cheap, Show me the code.(冗谈不够,放码过来!)。 代码阅读是从入门到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。   YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。 YOLOv3的实现Darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。   本课程将解析YOLOv3的实现原理和源码,具体内容包括:      YOLO目标检测原理       神经网络及Darknet的C语言实现,尤其是反向传播的梯度求解和误差计算       代码阅读工具及方法       深度学习计算的利器:BLAS和GEMM       GPU的CUDA编程方法及在Darknet的应用       YOLOv3的程序流程及各层的源码解析   本课程将提供注释后的Darknet的源码程序文件。   除本课程《YOLOv3目标检测:原理与源码解析》外,本人推出了有关YOLOv3目标检测系列课程,包括:   《YOLOv3目标检测实战:训练自己的数据集》   《YOLOv3目标检测实战:交通标志识别》   《YOLOv3目标检测:原理与源码解析》   《YOLOv3目标检测:网络模型改进方法》   建议先学习课程《YOLOv3目标检测实战:训练自己的数据集》或课程《YOLOv3目标检测实战:交通标志识别》,对YOLOv3的使用方法了解以后再学习本课程。
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页