
基于Flask框架和Vue框架搭建一个Web端的深度学习检测系统(从模型训练,界面设计到服务器部署实现一个完整项目实战)
回顾一下本项目的完整实现步骤:1.配置相应训练环境,安装必要的安装包以及npm;2.整理草莓叶子、花朵、果实数据集,以及无人机拍摄的数据集,进行人工标注;3.采用YOLO网络训练模型(可以选择任意版本的网络结构,但是需要在本代码中进行相应更改);4.模型训练完成在后端加载,所有检测识别结果在后端检测完成,然后上传到前端(前端界面也可以进行任意的设计);最后有需要完完整代码和数据集,可以加微信号wxid_cn1zsaudo0pn22付费获取,也可以一起交流。







