RC低通滤波电路直接带载后会发生什么?

1、滤波的含义

滤波是频域范畴,它说的是不同频率的信号经过一个电路处理后,信号发生变化的问题,变化包含了原始信号幅值和相位的变化,滤波电路对信号的幅值做出的响应称为幅频响应,对信号相位做出的反应称为相频响应。每一个频率的信号对应在时域就是信号的充放电特性。

滤波通常借助动态器件如电感和电容,利用它们在不同频率下阻抗变化,从而在其上面产生压降,对我们需要去除的信号进行衰减,从而达到滤波的效果。

我们知道电感和电容的阻抗特性其实就是储能特性,储能意味着时间特性,需要过程,这个过程是滤波特性的体现的一方面。

2、分析方法和工具

在s域,写出回路的传递函数,根据波特图进行分析,传递函数是输入和输出的增益关系

为了同时分析相位和幅值引入虚数,并且在虚平面进行分析,和频率相关的电路阻值特性,我们用阻抗描述,通常包含实部与虚部,这个数学工具的引入,包含了幅值和相位信息的体现,简化了分析难度。

图片

角速度描述表示

注:

由于自然界正弦信号认为是单一频率的信号,是基础信号,不可再分解,其它信号是以正弦为基础的合成信号,所以,以下从电路输入某个频率的正弦信号开始分析。正弦信号输入这些线性电路,达到稳定后,输出信号只会发生幅值和相位的改变,不改变信号的频率。

3、RC低通滤波电路结构和特性

(1)RC滤波电路,图中包含了这个电路的传递函数G(s)表达式

图片

RC滤波电路

从传递函数解出一个称作为极点的根,即令传递函数的分母为零,最后得出一个频率,由于这个频率从波特图上看,曲线在这个点前后发生突变的现象,我们形象地将这个频率称为“转折频率”,转折频率意味着一个响应发生“突变”的频率点,转折意味着响应的转弯点,前后会发生较大的变化。记住波特图图横轴是频率,代表着一系列不同频率信号通过这个电路后,输出会发生不一样的变化,是一系列的信号,不是单一信号。转折频率代表了电路的固有特性,是电路参数和结构导致的结果,是电路的固有属性。

图片

RC的转折频率

借助matalab工具进行绘制响应曲线,其它工具也可以,只要是自己熟悉的工具即可

下面我们对R和C赋值,R=100Ω,C1=100uF,得到转折频率f=15.915Hz

syms s R C % 定义符号参量

R=100; C=100*10^-6;% 给分子分母赋值

G(s)=1/(s*R*C+1);% 传递函数表达式

num=[0,1];% 分子系数 den=[1/100,1];% 分母系数

G1=tf(num,den)% 得出传递函数

margin(G1)% 画出增益和相位裕量图

grid on;

% 得出传递函数为G(s)=1/(s/100 + 1)

图片

RC的幅频和相频曲线

曲线说明

(1)直流增益,即低频增益,在传递函数中令s=0,得到直流增益为1,转换成dB刚好为0dB(0dB=20log1),这正是我们无源器件低通滤波器的特点,不能放大信号,在低频段,电容容抗几乎为无穷大,即电容为开路状态,信号被原模原样传输过来,这时候增益就是1,由于电容看做开路,那么阻性电路中,信号自然也不会产生任何相位偏移。

图片

直流增益

(2)转折频率的地方,这个频率的信号增益被衰减到原来的70.7%,也就是-3dB的地方,图中为-2.99dB对应转折频率为15.9Hz,这是由于实际计算转折频率为15.915Hz,存在一点误差。对相位来说,在这个频率点,相位会偏移-45°,负号表示信号被滞后了,从时间看,也就是被延时了。但是对其它不同频率信号在这个频率点前后响应出现较大的不同。之前看做不衰减也就是直流增益部分,之后信号被快速衰减,同时产生一定的相移。

(3)延时时间计算,也就是相位延迟和具体时间的对应关系,方便我们理解相位和延迟之间的关系,延迟时间为:延迟时间=Kd*周期

延迟系数Kd,即在一个360°周期里延迟角度占有的比例,这里是45/360=1/8,也就是45°占有360°的1/8。

转折频率约为15.9Hz,即一个周期为62.89ms。

那么,输入信号被延时时间为62.89ms*1/8=7.86ms,输出信号晚来输入信号7.86ms。

如下是对一个100Hz和200Hz信号进行延时举例,也说明了相位差和时间差之间的关联,它们一一对应(one to one)

图片

相位延迟的含义表示

用TINA仿真进行波形验证,借助仿真软件验证你的结果,并且可以帮助你理解

图片

RC仿真电路

相比于输入信号Uin,稳态后,电容电压为输出信号被滞后45°,并且幅度被衰减到70.7%,从下图波形也可以看出。(稳态后,电阻上电压超前了45°,想象一下,这个电路测量对象不同,带来了“高通”和“低通”的概念)

图片

仿真波形

4、直接带载后会发生什么?

如下图,我们将R2放置在电路中,模拟一个负载

图片

带载的RC电路

我们再次借助MATLAB化简方程

%zo输出阻抗,是电容C1和电阻R2的并联值 % z是电路总阻抗 % G(s)传递函数

syms R1 R2 C1

zo=R2/(s*C1*R2+1); z=R1+zo;

G(s)=zo/z; G1(s)=simplify(G(s))%化简代数式

最后得出传递函数为G(s)=G1(s)=R2/(R1 + R2 + C1*R1*R2*s)

同时令传递函数的分母为零解出极点,如上图,我们可以把它写作为频率的形式,这个频率在波特图中正好是转折频率,我们利用MATLAB进行验证

图片

带载后RC电路的转折频率

转折频率处,输出信号相比输入信号,输入信号的幅值被衰减到原来的70.7%,相位被滞后45°(图中就是-45,符号表示信号相位被滞后)

下面我们对R1、R2和C1赋值,R1=100Ω、R2=20Ω,C1=100nF

syms R1 R2 C1 s

R1=100;R2=20;C1=100*10^-9;

zo=R2/(s*C1*R2+1); z=R1+zo;

G(s)=zo/z;

G1(s)=simplify(G(s))%化简代数式

% G(s)=G1(s)=R2/(R1 + R2 + C1*R1*R2*s)

%得到传递函数表达式 G(s)=G1(s)=100000/(s+600000)

num=[0,100000]; den=[1,600000];

G1=tf(num,den)% 得到传递函数

margin(G1)

grid on;

最终得到幅频和相频特性图

图片

幅频和相频特性图

(1)直流增益,也就是低频下的增益,我们对传递函数频率项s=0,那么就得到直流增益,这也是我们在做电源环路中分析中采取的方法得到直流增益。这里直流增益如下,也就是除去了时效性动态器件的影响,纯阻性表现的特性,就是一个简单的分压电路。

图片

直流增益

注:1/6刚好是-15.6dB,负分贝表示信号被衰减

(2)转折频率处,我们经过简单计算,得到转折频率为f=95.49kHz,如下图,转折频率处信号衰减到原来的70.7%,即1/6*70%=0.1178,即为-18.6dB,波特图中可以看出,同时相位被滞后45°(-45℃)。

这个电路,我们对并联在C1上的R2取值为无限大,我们将R2取值无穷大后,只需要把传递函数简单化简后求极限,则电路重回到开头的RC电路,传递函数和RC低通电路相同。
 

图片

转折频率

注:负载的直接接入导致转折频率会向右移,即转折频率比单纯的RC会偏高,若R2趋于∞,那么转折频率由95.49k变为15.92k(用Excel快速计算一下)。

实际中滤波电路该怎么样接负载

实际当中,尤其是采样电路,我们经常会用到RC低通滤波,我们会采用输入阻抗很大的运放组成跟随器。

在MCU中,采样输入端口往往也是阻抗很大,所以我们也可以直接用RC滤波进行直接接入

高输入阻抗端口,这些都是让我们想要的信号幅值不发生衰减,而且几乎不产生相移、设定的转折频率不发生偏移,信号能够被正常采集。

### RC低通滤波器电路的设计与工作原理 #### 工作原理概述 RC低通滤波器是一种基本的无源滤波器,其核心功能是允许低于特定频率范围内的信号通过,同时衰减高于该频率的信号。这种行为是由电阻 \(R\) 和电容 \(C\) 的组合特性决定的。当输入信号经过由 \(R\) 和 \(C\) 构成的网络时,高频成分因电容器对高频信号呈现较低阻抗而被分流到地线,从而实现过滤效果[^3]。 对于单阶RC低通滤波器而言,传递函数可表示为: \[ H(j\omega) = \frac{1}{1+j\omega RC} \] 其中,\(j\) 是虚数单位,\(\omega\) 表示角频率 (\(2\pi f\)),\(f\) 代表实际频率。通过对上述表达式的分析可知,在截止频率处(即 \(\omega_c = \frac{1}{RC}\),对应的频率称为特征频率),增益下降至约 -3dB,相位滞后达到大约 45°。 #### 设计方法详解 设计一个有效的RC低通滤波器需要考虑几个关键参数: 1. **确定目标截止频率** 截止频率定义了滤波器区分“通”和“阻”的界限。它可以通过调整 \(R\) 或者 \(C\) 来设定。具体关系如下所示: \[ f_c = \frac{1}{2\pi RC} \] 2. **选择合适的元件值** 实际应用中需综合考量成本、体积以及可用元器件规格等因素来选定具体的数值。通常情况下,为了简化计算过程并减少误差累积效应的影响,建议优先采用标准系列中的组件型号。 3. **多级联结构优化性能** 单一阶段可能无法满足某些应用场景下的严格指标需求;此时可通过串联多个相同配置或者不同参数设置的一阶单元形成更高阶次的整体架构——比如题目提到的二阶RC低通滤波器就是典型例子之一。需要注意的是,随着复杂度增加也会引入额外挑战诸如相互间干扰等问题因此必须谨慎处理连接方式及其布局安排等方面细节[^1]。 以下是构建简单版本Python脚本模拟单阶RC LPF响应曲线的一个实例代码片段供参考: ```python import numpy as np import matplotlib.pyplot as plt def rc_low_pass(frequency, resistance=1e3, capacitance=1e-6): omega = 2 * np.pi * frequency magnitude = 1 / np.sqrt(1 + (omega*resistance*capacitance)**2) phase = -(np.arctan(omega*resistance*capacitance)) return magnitude, phase freqs = np.logspace(-1, 5, num=1000) magnitudes, phases = zip(*[rc_low_pass(freq) for freq in freqs]) plt.figure(figsize=(8,6)) plt.semilogx(freqs, list(map(lambda x: 20*np.log10(x), magnitudes))) plt.title('Magnitude Response of a Single-stage RC Low Pass Filter') plt.xlabel('Frequency [Hz]') plt.ylabel('|H| dB') plt.grid(True); plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Risehuxyc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值