题目大意:中文题。
算法思路:这道题可以通过dilworth定理,将原序列排序后,转化为求有多少个单调递增子序列(即求最大递减子序列的长度)。但是当我直接求单调递增子序列的个数的时候就过了,但转化为求最大递减子序列的长度的时候就超时了= =,实在是莫名其妙。。还是请各位大神帮我看看。。。
先看一下什么是偏序集,以及dilworth定理(以下内容转载自http://blog.csdn.net/sd6264456/article/details/8647752):
在Partially order set(偏序集)有一个非常NX的定理叫DilworthTheorem。上图是偏序集的一个Hasse diagram,偏序集的定义是
偏序是在集合X上的二元关系≤,它满足自反性、反对称性和传递性。即,对于X中的任意元素a,b和c,有:
自反性:a≤a;
反对称性:如果a≤b且b≤a,则有a=b;
传递性:如果a≤b且b≤c,则a≤c 。
带有偏序关系的集合称为偏序集。
令(X,≤)是一个偏序集,对于集合中的两个元素a、b,如果有a≤b或者b≤a,则称a和b是可比的,否则a和b不可比。
在X中,对于元素a,如果任意元素b,由b≤a得出b=a,则称a为极小元。
一个反链A是X的一个子集,它的任意两个元素都不能进行比较。
一个链C是X的一个子集,它的任意两个元素都可比。
下面是两个重要定理:
定理1令(X,≤)是一个有限偏序集,并令r是其最大链的大小。则X可以被划分成r个但不能再少的反链。
其对偶定理称为Dilworth定理:
定理2 令(X,≤)是一个有限偏序集,并令m是反链的最大的大小。则X可以被划分成m个但不能再少的链。
搞清楚了反链和链的定义,就能够很好的从HasseDiagram中得到理解。链就是从纵向的角度看 Hasse Diagram ,反链是从横向的角度看HasseDiagram。
定理一,就是至少有r行构成反链关系。
定理二,就是至少有m列构成链关系。
我们来考虑一个导弹拦截问题,就是求一个序列的最长不上升子序列,以及求能最少划分成几组不上升子序列。很显然第一个是动态规划,动态规划的过程就是求HasseDiagram的过程!!!
第二问就是求最少能够划分成几个链,根据定理2,很显然就是反链的最大长度。反链就是一个上升子序列。即求一个严格上升子序列的最大长度。
注意一个问题是,在获得偏序集有几个主链的时候,需要对数据集先进行排序,然后从头开始,沿着主链顺序DFS。由于导弹拦截的问题,天然有序,形成了严格上升自序列,所以没有凸显这个问题!
先上个ac的代码(直接求个数的)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 5050
int t,n;
typedef struct Node
{
int l,w;
};
Node nodes[MAXN];
int dp[MAXN],MAXX;
bool cmp(Node n1,Node n2)
{
if(n1.l!=n2.l)
return n1.l<n2.l;
return n1.w<n2.w;
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int ans=0;
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
scanf("%d%d",&nodes[i].l,&nodes[i].w);
}
sort(nodes+1,nodes+n+1,cmp);
for(int i=1;i<=n;i++)
{
if(dp[i]==0)
{
ans++;
int m=nodes[i].w;
for(int j=i+1;j<=n;j++)
{
if(nodes[j].w>=m&&dp[j]==0)
{
m=nodes[j].w;
dp[j]=1;
}
}
}
}
printf("%d\n",ans);
}
return 0;
}
接下来是超时的(转化为求最大递减子序列的长度的)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 5050
int t,n;
typedef struct Node
{
int l,w;
};
Node nodes[MAXN];
int dp[MAXN],MAXX;
bool cmp(Node n1,Node n2)
{
if(n1.l!=n2.l)
return n1.l<n2.l;
return n1.w<n2.w;
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int ans=0;
for(int i=1;i<=n;i++)
{
dp[i]=1;
}
for(int i=1;i<=n;i++)
{
scanf("%d%d",&nodes[i].l,&nodes[i].w);
}
sort(nodes+1,nodes+n+1,cmp);
for(int i=n-1;i>=1;i--)
{
for(int j=i+1;j<=n;j++)
{
if(nodes[i].w>nodes[j].w)
{
if(dp[i]<dp[j]+1)
dp[i]=dp[j]+1;
}
}
}
int MAXX=0;
for(int i=1;i<=n;i++)
{
if(MAXX<dp[i])
MAXX=dp[i];
}
printf("%d\n",MAXX);
}
return 0;
}