阿里巴巴B2B电商算法首次对外公开

新书速递

导读:阿里巴巴B2B在战略形态上经历了信息平台、交易平台和营销平台的升级迭代,本书聚焦营销平台商业形态背后的算法和技术能力,试图从技术和商业互为驱动的视角阐述技术如何赋能业务,并结合阿里巴巴集团在基础设域和算法创新上的沉淀,打造出智能B2B商业操作系统。

亮点

  • 阿里巴巴CBU技术部(1688.com)是阿里巴巴集团B2B电商新零售新制造的重要技术生力军。

  • 阿里巴巴CBU技术部15年来通过技术为千万中小企业赋能,在B2B领域的交易、支付、营销、采购、分销等环节沉淀了大量的技术经验和成果。

  • 结合阿里巴巴B2B电商业务场景,深度解析算法对用户、商品、商家的精准刻画,围绕搜索、推荐、营销、直播、端智能等场景建模,还原商业视角的技术思考和落地。

主要内容

具体内容方面,结合阿里巴巴B2B电商业务场景,深度解析算法对用户商品商家的精准刻画,围绕搜索推荐营销直播端智能等场景建模,还原商业视角的技术思考和落地方法。

  • 第1章从技术的角度介绍了阿里提出的“”四位一体的电商核心要素,揭秘了阿里是如何同时做到在消费端和供给端提高效率的。

  • 第2章重点讲解了算法落地依赖的工程系统,包括搜索引擎推荐引实时数据工程

  • 第3章聚焦搜索算法,核心是基于Query理解的导航和搜索排序算法;

  • 第4章重点剖析推荐算法,从召回排序两个环节展开; 

  • 第5章介绍任何商业平台都离不开的营销算法,以及红包和优惠券等营销工具的使用;

  • 第6章讲解了当下在各电商平台盛行的新兴电商内容呈现形式背后的算法,包括直播推荐算法、短视频推荐算法、榜单算法、首图个性推荐算法、端智能等;

  • 第7章以知识图谱开篇,重点讲解了阿里巴巴B2B在电商结构化信息挖掘和场景应用等方面的经验;

  • 第8章从流量效率最大化的角度阐述了全域中控技术框架核心算法

 

实拍图

目录

作者介绍

前 言

第1章 电商四位一体  1

1.1 人—买家  1

1.1.1 开源引流2

1.1.2 客群画像17

1.2 货—货源  22

1.2.1 价格力22

1.2.2 趋势力28

1.3 场—内容  36

1.3.1 智能文案37

1.3.2 文案标签化46

1.3.3 模型工程优化49

1.3.4 展望规划49

1.4 商—企划  50

1.4.1 品类规划定义51

1.4.2 波士顿矩阵53

1.4.3CBU品类规划53

1.4.4 技术架构59

1.4.5 展望规划61

第2章 系统工程  63

2.1 搜索工程  63

2.1.1 统一入口SP服务64

2.1.2 策略平台OpenSE72

2.1.3 意图分析QP74

2.1.4 在线引擎HA377

2.1.5 离线系统Dump81

2.2 推荐工程  85

2.2.1 召回引擎BE85

2.2.2 算分服务RTP89

2.3 实时数据工程  95

2.3.1 概述 96

2.3.2 数据采集96

2.3.3 数据分层98

2.3.4 数据服务99

2.3.5 数据应用100

第3章 搜索算法  101

3.1Query查询词理解  101

3.1.1Query类目预测102

3.1.2Query改写106

3.1.3Query推荐111

3.2 搜索排序   122

3.2.1 召回124

3.2.2 粗排135

3.2.3 精排142

3.2.4 搜索底部推荐161

第4章 推荐算法  163

4.1 召回  164

4.1.1 协同过滤165

4.1.2Embedding I2I168

4.1.3DeepMatch170

4.2 排序  176

4.2.1Wide&Deep模型176

4.2.2DIN180

4.2.3DIEN183

4.2.4DMR186

4.2.5ESMM190

第5章 营销算法  197

5.1 红包  197

5.1.1 用户敏感度建模198

5.1.2 离线红包分配200

5.1.3 在线红包分配202

5.2 营销优惠券  208

第6章 多模态内容场景与端智能  212

6.1 直播推荐算法  212

6.1.1 多目标学习213

6.1.2 用户异构行为214

6.1.3 直播排序模型214

6.2 短视频推荐算法  219

6.2.1 短视频推荐概述219

6.2.2 基于异构网络图的推荐方案220

6.3 榜单算法  229

6.3.1 榜单生成229

6.3.2 榜单召回推荐232

6.3.3 榜单内商品排序232

6.3.4 榜单个性化文案233

6.4 多形态内容混排  235

6.5App端智能  239

6.6 首图个性化  244

6.6.1 全局最优视角联合打散244

6.6.2 跨域召回(从淘宝到1688) 247

第7章 认知推理  250

7.1 电商知识图谱  250

7.1.1 知识工程与专家系统250

7.1.2 语义网络与知识图谱252

7.1.3 知识图谱构建254

7.1.4 知识表示265

7.2 知识图谱主题会场  268

7.3 知识蒸馏  271

7.3.1 知识蒸馏的起源272

7.3.2 多种传递形式的知识蒸馏274

7.3.3 知识蒸馏应用于自然语言生成277

7.3.4BERT模型蒸馏280

7.4 组货推荐  281

7.4.1 同款匹配281

7.4.2 组货搭配284

7.4.3 服饰搭配286

第8章 全域中控  290

8.1 流量中控  290

8.2 在线动态广告分配  297

8.3 目标动态规划  307

上下滑动查看

 

点击链接了解详情并购买

 

关注小晨说数据,获取更多大厂技术干货分享

回复“spark”,“flink”,“中台”,“机器学习”,“用户画像”获取海量学习资料~~~


你也「在看」吗?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值