桶式排序不再是一种基于比较的排序方法,它是一种比较巧妙的排序方式,但这种排序方式需要待排序的序列满足以下两个特征:
待排序列所有的值处于一个可枚举的范围之类;
待排序列所在的这个可枚举的范围不应该太大,否则排序开销太大。
排序的具体步骤如下:
(1)对于这个可枚举范围构建一个buckets数组,用于记录“落入”每个桶中元素的个数;
(2)将(1)中得到的buckets数组重新进行计算,按如下公式重新计算:
buckets[i] = buckets[i] +buckets[i-1] (其中1<=i<buckets.length);
桶式排序是一种非常优秀的排序算法,时间效率极高,它只要通过2轮遍历:第1轮遍历待排数据,统计每个待排数据“落入”各桶中的个数,第2轮遍历buckets用于重新计算buckets中元素的值,2轮遍历后就可以得到每个待排数据在有序序列中的位置,然后将各个数据项依次放入指定位置即可。
桶式排序的空间开销较大,它需要两个数组,第1个buckets数组用于记录“落入”各桶中元素的个数,进而保存各元素在有序序列中的位置,第2个数组用于缓存待排数据。
桶式排序是稳定的。
如果待排序数据的范围在0~k之间,那么它的时间复杂度是O(k+n)的
桶式排序算法速度很快,因为它的时间复杂度是O(k+n),而基于交换的排序时间上限是nlg n。
但是它的限制多,比如它只能排整形数组。而且当k较大,而数组长度n较小,即k>>n时,辅助数组C[k+1]的空间消耗较大。
当数组为整形,且k和n接近时, 可以用此方法排序。(有的文章也称这种排序算法为“计数排序”)
代码实现:
- public class BucketSortTest {
- public static int count = 0;
- public static void main(String[] args) {
- int[] data = new int[] { 5, 3, 6, 2, 1, 9, 4, 8, 7 };
- print(data);
- bucketSort(data, 0, 10);
- print(data);
- }
- public static void bucketSort(int[] data, int min, int max) {
- // 缓存数组
- int[] tmp = new int[data.length];
- // buckets用于记录待排序元素的信息
- // buckets数组定义了max-min个桶
- int[] buckets = new int[max - min];
- // 计算每个元素在序列出现的次数
- for (int i = 0; i < data.length; i++) {
- buckets[data[i] - min]++;
- }
- // 计算“落入”各桶内的元素在有序序列中的位置
- for (int i = 1; i < max - min; i++) {
- buckets[i] = buckets[i] + buckets[i - 1];
- }
- // 将data中的元素完全复制到tmp数组中
- System.arraycopy(data, 0, tmp, 0, data.length);
- // 根据buckets数组中的信息将待排序列的各元素放入相应位置
- for (int k = data.length - 1; k >= 0; k--) {
- data[--buckets[tmp[k] - min]] = tmp[k];
- }
- }
- public static void print(int[] data) {
- for (int i = 0; i < data.length; i++) {
- System.out.print(data[i] + "\t");
- }
- System.out.println();
- }
- }
运行结果:
- 5 3 6 2 1 9 4 8 7
- 1 2 3 4 5 6 7 8 9