大家好,我是snippet,今天是刷蓝桥真题的第七天,今天有动态规划的知识点,下面是我今天前面三个题的题解,题四晚点补
目录
一、三角回文
题目链接:三角回文数 - 蓝桥云课 (lanqiao.cn)
题目内容:
问题描述
对于正整数 n, 如果存在正整数 k 使得 n=1+2+3+⋯+k=k(k+1)/2, 则 n 称为三角数。例如, 66066 是一个三角数, 因为 66066=1+2+3+⋯+363 。
如果一个整数从左到右读出所有数位上的数字, 与从右到左读出所有数位 上的数字是一样的, 则称这个数为回文数。例如, 66066 是一个回文数, 8778 也是一个回文数。
如果一个整数 n 既是三角数又是回文数, 我们称它为三角回文数。例如 66066 是三角回文数。
请问, 第一个大于 20220514 的三角回文数是多少?
答案提交
这是一道结果填空的题, 你只需要算出结果后提交即可。本题的结果为一 个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。
运行限制
- 最大运行时间:1s
- 最大运行内存: 256M
解题思路:
因为是找比20220514大的回文数 所以我们一般会从4000开始遍历,同时判断它是否满足回文和满足三角数,如果满足则直接输出
代码:
package 蓝桥杯31天真题冲刺.Day7;
import java.io.*;
/**
* @author snippet
* @data 2023-03-10
* 三角回文数
*/
public class T1_三角回文数 {
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
static StreamTokenizer st = new StreamTokenizer(br);
// 判断是否满足回文
static boolean check(long n) {
String s = n + "";
return s.equals(new StringBuilder(s).reverse().toString());
}
public static void main(String[] args) throws IOException {
for (int i = 4000; i <= 90000; i++) {
long k = (long) i * (i+1) / 2;
if (k > 20220514 && check(k)) {
pw.println(k);
break;
}
}
pw.flush();
br.close();
}
static int nextInt() throws IOException {
st.nextToken();
return (int)st.nval;
}
}
二、数数
题目内容:
问题描述
任何一个大于 1 的正整数都能被分解为若干个质数相乘, 比如 28=2×2×7 被分解为了三个质数相乘。请问在区间 [2333333, 23333333] 中有多少个正整数 可以被分解为 12 个质数相乘?
答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。
运行限制
- 最大运行时间:1s
- 最大运行内存: 512M
解题思路:
因为是求数字能不能被12个素数相乘得到,那直接把这个数从2开始除,能除就一直除,不能就除下一个数,直到把这个数除为1,记录除数的个数,如果等于12,则满足条件记录答案++
代码:
package 蓝桥杯31天真题冲刺.Day7;
import java.io.*;
/**
* @author snippet
* @data 2023-03-10
* 数数-蓝桥云课
*/
public class T2_数数 {
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
static StreamTokenizer st = new StreamTokenizer(br);
// check函数判断是否满足条件
static boolean check(int x) {
int cnt = 0;
for (int i = 2; i*i <= x; i++) {
while (x % i == 0) {
x /= i;
cnt++;
}
}
if (x != 1) cnt++;
if (cnt == 12) return true;
return false;
}
static int ans;
public static void main(String[] args) throws IOException {
for (int i = 2333333; i <= 23333333; i++) {
if (check(i)) ans++;
}
pw.println(ans);
pw.flush();
br.close();
}
static int nextInt() throws IOException {
st.nextToken();
return (int)st.nval;
}
}
三、数组切分
题目内容:
问题描述
已知一个长度为 N 的数组: A1,A2,A3,…AN 恰好是 1∼N 的一个排列。现 在要求你将 A 数组切分成若干个 (最少一个, 最多 N 个) 连续的子数组, 并且 每个子数组中包含的整数恰好可以组成一段连续的自然数。
例如对于 A=1,3,2,4, 一共有 5 种切分方法:
13241324 : 每个单独的数显然是 (长度为 1 的) 一段连续的自然数。
{1}{3,2}{4}:{3,2}{1}{3,2}{4}:{3,2} 包含 2 到 3 , 是 一段连续的自然数, 另外 11 和 44 显然 也是。
{1}{3,2,4}:{3,2,4}{1}{3,2,4}:{3,2,4} 包含 2 到 4 , 是一段连续的自然数, 另外 11 显然也是。
{1,3,2}{4}:{1,3,2}{1,3,2}{4}:{1,3,2} 包含 1 到 3 , 是 一段连续的自然数, 另外 44 显然也是。
{1,3,2,4}{1,3,2,4} : 只有一个子数组, 包含 1 到 4 , 是 一段连续的自然数。
输入格式
第一行包含一个整数 N 。第二行包含 N 个整数, 代表 A 数组。
输出格式
输出一个整数表示答案。由于答案可能很大, 所以输出其对 1000000007 取 模后的值
样例输入
4
1 3 2 4
样例输出
5
评测用例规模与约定
对于 30% 评测用例, 1≤N≤20.
对于 100% 评测用例, 1≤N≤10000.
运行限制
- 最大运行时间:5s
- 最大运行内存: 512M
解题思路:
这个题可以看出是用动态规划,我们首先应该考虑如果子区间是连续自然数的话,需要满足的条件应该是在区间[left,right]中 max - min == right - left;max为该区间最大值,min为该区间最小值;
因为数据是1e4,所以可以用双重for循环进行状态转移,状态转移式:f[i] = (f[i] + f[j-1])
代码:
package 蓝桥杯31天真题冲刺.Day7;
import java.io.*;
/**
* @author snippet
* @data 2023-03-10
* 数组切分-蓝桥云课
*/
// 动态规划
public class T3_数组切分 {
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
static StreamTokenizer st = new StreamTokenizer(br);
static int n;// n表示数组的个数
static int mod = 1000000007;
static int[] arr = new int[10010];// 一维数组arr表示原始数据数组
static long[] f = new long[10010];// 一维数组f表示位置1->i的自然数的切分方法数
public static void main(String[] args) throws IOException {
n = nextInt();
for (int i = 1; i <= n; i++) {
arr[i] = nextInt();
}
// 初始化
f[0] = 1;
for (int i = 1; i <= n; i++) {
int max = arr[i], min = arr[i];
for (int j = i; j >= 1; j--) {
max = Math.max(max, arr[j]);
min = Math.min(min, arr[j]);
// 状态转移
if (max - min == i - j) {
f[i] = (f[i] + f[j-1])%mod;
}
}
}
pw.println(f[n]);
pw.flush();
br.close();
}
static int nextInt() throws IOException {
st.nextToken();
return (int)st.nval;
}
}