RuntimeError: “unfolded2d_copy“ not implemented for ‘Half‘

问题:RuntimeError: “unfolded2d_copy” not implemented for ‘Half’
在这里插入图片描述在使用GPU训练完deepspeech2语音识别模型后,使用django部署模型,当输入传入到模型进行计算的时候,报出的错误,查了问题,模型传入的参数use_half=TRUE,就是利用fp16混合精度计算对CPU进行推理,使用fp16来加快速度。

解决方式:
pytorch conv cpu不支持fp16,所以只需要将use_half=False,或者将.half()修改成.float(),这样就能进行计算了。
在这里插入图片描述

  • 11
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 18
    评论
### 回答1: 这个错误通常出现在使用PyTorch时。它意味着你正在尝试在数据类型为“half”的张量上执行某个操作,而该操作还没有被实现。"half"类型通常是指16位浮点数,它比32位的浮点数(float)占用更少的内存,但在一些操作中可能会导致精度问题。 要解决这个问题,你可以尝试使用float类型的张量来代替“half”类型的张量。或者,你可以检查你的PyTorch版本是否过旧,如果是,则更新到最新版本,以查看是否已经实现了这个操作。另外,你也可以尝试使用其他支持“half”类型的深度学习框架来解决这个问题。 ### 回答2: 该错误是由于在使用PyTorch时尝试使用所谓“unfolded2d_copy”的函数时引起的。这通常发生在使用半精度(float16)的数据类型时。在PyTorch中,半精度数据类型的效率比正常精度数据类型更高,可以节省内存和加速计算。但是,并非所有函数都适用于半精度数据类型。 “unfolded2d_copy”是一个在卷积运算过程中使用的函数,它将被滚动展开的数据复制到一个新的平面数组中。然而,在半精度数据类型上实现此函数是困难的,因为半精度数据类型的范围和精度很小,可能导致数据丢失或精度降低。因此,PyTorch尚未实现“unfolded2d_copy”函数的半精度版本,以确保计算精度和性能的平衡。 如果想要避免这个错误,可以尝试在计算时使用标准的32位浮点数数据类型。当然,这需要更多的内存和运算时间,但可以确保计算的精确性。此外,如果实际情况需要半精度数据类型,那么需要注意避免在使用“unfolded2d_copy”时出现这个错误。可以通过使用其他函数替换“unfolded2d_copy”来解决问题,或者在编写自定义的半精度函数时注意数据类型和计算精度。 ### 回答3: 运行时错误:'half'类型的数组不支持 "unfolded2d_copy" 操作 在深度学习中,常常会用到卷积神经网络(Convolutional Neural Networks, CNN)来处理图像等数据。卷积操作是CNN中很重要的一部分。而在进行卷积操作时,往往需要将输入的图像数据进行展开(unfold)以便进行卷积操作。这个操作在PyTorch中通过函数 `torch.nn.functional.unfold()` 实现。 当我们使用 `torch.nn.functional.unfold()` 函数处理数据时,如果输入的数据类型为半精度浮点数类型(half),就可能会出现 `runtimeerror: "unfolded2d_copy" not implemented for 'half'` 的错误。 这个错误的原因可能是硬件加速库的问题。因为使用半精度浮点数(half)类型时,需要的硬件加速库可能不支持这一数据类型。在这种情况下,我们可以尝试更换深度学习框架的版本或者更换硬件设备,以解决这个问题。 除此之外,我们还可以将输入数据类型转换为其他类型,如单精度浮点数(float)或双精度浮点数(double),避免使用半精度浮点数类型(half)。 总之,当出现 `runtimeerror: "unfolded2d_copy" not implemented for 'half'` 的错误时,我们需要明确的知道这是硬件加速库不支持半精度浮点数类型(half)所致,可以通过升级软件版本或更换硬件设备,或改变数据类型来解决这个问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要好好学习呀!

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值