图像生成文本(三) —— Multi-Modal RNN模型(多模态)

由百度研发团队最先提出来的

多模态数据,不同传感器对同一事物的描述数据,比如说,相机、X光、红外线对同一个场景同一个目标照出的图片

 

 

将一个词embedding成一个128维的向量,再经过一个全连接层变成一个256维的向量

然后embedding2,再经过一个全连接,到了Multimodal层

同时,embedding2也输入到Recurrent这个RNN中去,得到的输出也输入到Multimodal层

同时,还有一个图像经过CNN提取出来的特征通过全连接层,输入输入到Multimodal层

这三方输入进行拼接,拼接成一个大向量

 

 

embeddingA就是embedding1,B就是2

 

 

引用:论文"Text Generation from Knowledge Graphs with Graph Transformers"介绍了一种使用图换器(Graph Transformer)生成文本的方法。这篇论文于2019年在自然语言处理领域的顶级会议NAACL上发表。 引用:在这种方法中,通过将知识图谱表示为一个有连接但没有标签的图,来生成文本。这个图被表示为G=(V,E),其中V表示实体、关系和全局向量节点,E表示连接矩阵。这里的G和V不同于之前提到的图G和v。 引用:论文中进行了自动评估和人工评估的实验。在自动评估中,使用了名为GraphWriter的模型,其中将图换器编码器替换为图注意力网络(Graph Attention Network)。此外,还进行了其他实验,包括只使用实体和标题信息的Entity Writer、只使用文章标题的Rewriter等。 综上所述,"Text Generation from Knowledge Graphs with Graph Transformers"论文提出了一种使用图换器生成文本的方法,并通过实验证明了该方法的有效性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【论文解读】基于图Transformer从知识图谱中生成文本](https://blog.csdn.net/qq_27590277/article/details/107925756)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>