优化算法(五)—人工蜂群算法Artificial Bee Colony Algorithm(ABC)

      人工蚁群算法是一种模仿蜜蜂采蜜机理而产生的群智能优化算法。其原理相对复杂,但实现较为简单,在许多领域中都有研究和应用。

 

蜜蜂采蜜机理

      蜜蜂是一种群居昆虫,虽然单个昆虫的行为极其简单,但是由单个简单的个体所组成的群体却表现出极其复杂的行为。真实的蜜蜂种群能够在任何环境下,以极高的效率从食物源(花朵)中采集花蜜;同时,它们能适应环境的改变。

 

      蜂群产生群体智慧的最小搜索模型包含基本的三个组成要素:食物源、被雇佣的蜜蜂和未被雇佣的蜜蜂。两种最基本的行为模型:为食物源招募蜜蜂和放弃某个食物源。

 

 

在基本ABC算法中,人工蜂群包含三种个体:雇佣蜂、观察蜂和侦查蜂

每个雇佣蜂对应一个确定的蜜源(解向量),并在迭代中对蜜源的领域进行搜索。

根据蜜源的丰富程度(适应值的大小)采用轮盘赌的方式雇佣观察蜂采蜜(搜索新蜜源)

如果蜜源多次更新没有改进,则放弃该蜜源,雇佣蜂转为侦查蜂随机搜索新蜜源。

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页