zeng_haoyu的博客

记录自己的学习过程

Tensorboard的使用

    Tensorboard是Tensorflow自带的一个强大的可视化工具,目前支持7种可视化,即SCALARS、IMAGES、AUDIO、GRAPHS、DISTRIBUTIONS、HISTOGRAMS、EMBEDDINGS这七种可视化的主要功能如下:

        SCALARS:展示训练过程中的准确率、损失值、权重和偏置的变化情况

        IMAGES:展示训练过程中记录的图像

        AUDIO:展示训练过程中记录的音频

        GRAPHS:展示模型的数据流图,以及训练在各个设备上消耗的时间和内存

        DISTRIBUTIONS:展示训练过程中记录的数据的分布图

        HISTOGRAMS:展示训练过程中记录的数据的柱状图

        EMBEDDINGS:展示词向量(如Word2vec)后的投影分布

TensorBoard通过运行一个本地服务器,来监听6006端口。在浏览器发出请求时,分析训练时记录的数据,绘制训练过程中的图像,接下来我会使用Tensorboard演示一下前面的基于卷积神经网络实现的人脸识别程序。


SCALARS:


可能上面这张图你看的不是很爽,改一下好了:


IMAGES:


GRAPHS:


还有一个PROJECTOR,但是我的这个程序好像没有显示这个东西,于是我去试了试原来的程序,发现原来参考网站上的代码是有这个PROJECTOR的,显示效果如下:是一个不停旋转的动图


至于我的程序为什么没有这个东西,等我找出原因再说。


还有几个其他的可视化功能没有用到,到后面学习到的时候在展示剩余的功能。

至于可视化的代码则没有加什么东西,只加了一个image的显示和名称作用域,实际的操作运行和完整的代码后续会更新,等我总结好了Tensorboard的使用后,再过来记录


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/hy13684802853/article/details/80317170
文章标签: Tensorboard
个人分类: 深度学习
想对作者说点什么? 我来说一句

tensorboard学习代码和图片

2018年03月20日 3MB 下载

没有更多推荐了,返回首页

不良信息举报

Tensorboard的使用

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭