实现两个N*N矩阵的乘法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/hyg0811/article/details/10001575

实现两个N*N矩阵的乘法,矩阵由一维数组表示。

先介绍一下矩阵的加法:

复制代码
1     void Add(int rows, int cols)  
2     {  
3        for(int i= 0;i<rows;i++)  
4        {  
5        for(int j=0;j<cols;j++)  
6           result[i][j]=mat1[i][j]+mat2[i][j];  
7        }  
8     } 
复制代码

若两个矩阵要做乘法运:只有在一个矩阵的行数与另一个矩阵的列数相同时,才能做两个矩阵的乘法。

如何得到矩阵的转置

矩阵的转置也是一个矩阵,原始矩阵中的行转变为转置矩阵的列。例如,有下述一个3×3矩阵:

1 2 3
6 7 8
4 5 9

那么它的转置矩阵为:

1 6 4
2 7 5
3 8 9

让我们从程序员的角度仔细地考察一下这一现象。假设原始数组为M,转置矩阵为MT。那么M[1][0]=6,在转置矩阵中我们发现MT [0][1]=6。因此,我们能够得到程序化的结论:转置一个矩阵实际上就是对换下标变量。用技术术语讲:

  1. MT[Row][Column] = M[Column][Row]; 

下面是得到转置矩阵的C代码:

    void show_transpose(float mat[][10],int row,int col)  
    {  
       int i,j;  
       for(i=0;i<row;i++)  
       {  
          for(j=0;j<col;j++)  
             printf("%f\t",mat[j][i]);  
          printf("\n");  
       }  
    } 

这个方法显示了矩阵的转置。

#include<iostream>
using namespace std;
#define size 2

int multi(int *a , int *b , int N)
{
	int i , j , k , temp;
	int *c = (int*)malloc(N * N * sizeof(int));

	for(i = 0 ; i < N ; i++)
	{
		for(j = 0 ; j < N ; j++)
		{
			temp = i * N + j;
			*(c + temp) = 0;
			for(k = 0 ; k < N ; k++)
			{
				*(c + temp) += a[i * N + k] * b[k * N + j];
			}
			cout<<*(c + temp)<<" ";
		}
	}
	return *c;
}

int main()
{
	int a[size * size] = {2 , 1 , 4 , 3};
	int b[size * size] = {1 , -1 , 3 , 2};
	multi(a , b , size);

	return 0;
}



展开阅读全文

没有更多推荐了,返回首页