自主机器和系统的网络安全

自动驾驶汽车和无人机的崛起带来了显著的安全风险,由于它们的无线连接特性,容易受到恶意黑客的攻击。文章讨论了黑客可能造成的威胁,如控制无人机引发事故,以及自动驾驶汽车可能面临的勒索软件攻击、数据泄露等问题。为了应对这些风险,网络安全专家的需求正在增加,特别是在保护自主系统免受黑客攻击的领域。机器学习和贝叶斯网络等技术被用来增强防御策略,但黑客的创新意味着安全专家需要持续更新知识和策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不久前,自动驾驶汽车和其他自动驾驶汽车还是科幻小说的素材。如今,无人机和自动驾驶汽车已经被开发出来,并在不断改进。但它们无线连接周围一切事物的能力,也使自主系统容易受到恶意行为者的攻击。

例如,被黑客入侵的无人机(UAV)如果落入坏人之手,可能会带来真正的危险。高级分析师格伦·桑德斯在Tractica.com网站上的《The Very Real Dangers of Hacked Drones》中写道:“根据所达到的控制水平,黑客可以让无人机失去反应,撞向建筑物、飞机、车辆或人,或者让它飞走并偷走它。”

“它们还可能改变航路点、更改飞行数据、设置不同的home 位置、捕捉数据和图像流,或者做任何无人机主人可以做的事情。”

然而,尽管存在风险,计算机系统正逐步变得更加自主。未来,开发自动驾驶汽车和工业机器人系统的公司将需要专家来保护他们的产品免受黑客攻击。

拥有在线网络安全硕士学位,并熟悉自主系统的安全,将使这些职位的候选人受到关注。

自主机器安全风险

自动系统业务仍然是一个不断增长的行业,没有一个完整的监管支持结构。随着无人驾驶汽车越来越受欢迎,至少在平民中越来越受欢迎,政府法规和指导方针有望出台。

研究人员Araz Taeihagh在2017年的论文《治理自动驾驶汽车:对安全、责任、隐私、网络安全和行业风险的新兴应对措施》(Governing Autonomous Vehicles: Emerging Responses for Safety, Liability, Privacy, Cybersecurity, and Industry Risks.)”

换句话说,未来的经济繁荣可能严重依赖于国家在数据、分析、人工智能等领域的投资,而这些领域是自动汽车行业严重依赖的。

随着自主系统经过测试阶段,进入公共和私营部门,网络安全再次成为首要问题。当错误导致人员伤亡时,责任诉讼必然会出现。自动驾驶汽车、无人机和机器人在进入商业市场时,需要尽可能地安全。

在无人驾驶汽车进入当地汽车经销商的人行道之前,网络安全专家必须做好准备,应对一系列与黑客有关的风险。MachineDesign.com的数字营销专家里林德·埃莱扎强调了“自动驾驶汽车:安全机遇还是网络安全威胁?(Autonomous Cars: Safety Opportunity or Cybersecurity Threat?)”:

  • 自动驾驶汽车可能会被勒索软件入侵,在支付赎金之前,车主无法进入、启动或退出汽车。
  • 恐怖分子黑客可以使网络、传感器和摄像头失效,导致多次碰撞。
  • 一辆自动驾驶汽车的操作系统可能会被黑客入侵,暴露其他联网设备上的个人信息
  • 被黑的车辆可能会被重新安排到一个有抢劫或袭击计划的区域。
  • 联网汽车可以控制家中的物联网设备,黑客可以进入人们的家庭计算机网络

无人机,尤其是军用无人机,还带有其他一些风险,需要有效的网络安全解决方案。Tractica.com网站的桑德斯指出,GPS干扰、覆盖“返家”故障保险(overriding “return to home” fail-safes,)、拦截无人机的视频/图像/数据,都可能导致灾难性的破坏、盗窃和暴露敏感或机密信息。

军用无人机可能因为携带的弹药和爆炸物而成为攻击目标。但即使是私人拥有的无人机,比如可能很快就会被用于 运送网上购买的商品的无人机,也会成为黑客的吸引目标。

自主系统网络安全战略

自动驾驶汽车计算机系统的机器学习算法是抵御黑客的第一道防线。根据软件开发人员Dino Causevic 在on Toptal.com. 上的文章“How Machine Learning Can Enhance Cybersecurity for Autonomous Cars” 的说法,在汽车使用足够长的时间以建立其所有者的模式之后,任何超出该模式的东西都将被标记为可疑,提醒所有者并需要身份验证。toptal.com上的汽车”。

然而,一些黑客拥有必要的专业知识来欺骗(伪造)用户凭证并绕过这第一道防线。为了解决这个问题,机器学习可以用于分析不断增长的数据库中的异常数据。此外,还可以扫描车与车之间的通信,以确定传入的数据是“正常驾驶行为”还是恶意利用。

贝叶斯网络(BNs)也在自动机器网络安全方面发挥作用。研究人员Barry Sheehan等人表示:“BN是因果关系的概率模型,图形化地表达了不同变量之间的因果关系(即条件概率)。”

在“ Connected and Autonomous Vehicles: A Cyber-Risk Classification Framework” Sheehan还写道:“变量之间的影响链可以通过通过决定因果依赖性质的单向链接链接节点(即变量)来图形化地说明……每个单独的节点都有一个有限的互斥状态集,每一种状态都是由经验关系,机械描述或专家判断所决定的概率表达式来描述的"(The chain of influences between variables can be illustrated graphically by linking nodes (i.e., variables) by one-way directed links that determine the nature of the causal dependencies… Each individual node has a finite set of mutually exclusive states, with each state described by a probabilistic expression determined by empirical relationships, mechanistic descriptions or expert judgment.)

随着自动驾驶汽车、无人机和自动化工业设备的不断普及,从事自动驾驶机器行业的网络安全专业人士可能会面临新的挑战。

研究生级别的网络安全课程将使学生熟悉自动化系统中最有效的安全措施类型。但最成功的专业人士也会努力在新的安全技术可用时保持领先地位。毕竟,黑客总是倾向于开发新的漏洞。积极主动的网络安全专家总是最有效的。


在自主系统网络安全、网络安全与行为、数据安全和一般网络安全。

Sources:

The Very Real Dangers of Hacked Drones – Tractica.com

Governing Autonomous Vehicles – TandFonline.com

Autonomous Cars – MachineDesign.com

How Machine Learning Can Enhance Cybersecurity for Autonomous Cars – Toptal.com

Connected and Autonomous Vehicles – ScienceDirect.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理心炼丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值