深度学习知识点
文章平均质量分 91
笔记
理心炼丹
只争朝夕
博客园:https://www.cnblogs.com/odesey
展开
-
机器学习分类模型评价指标之ROC 曲线、 ROC 的 AUC 、 ROI 和 KS
ROC曲线是由 FPR 与 TPR 构成的曲线。该曲线最早应用于雷达信号检测领域,用于区分信号与噪声。后来人们将其用于评价模型的预测能力。与 P-R 曲线类似,通过设定不同的模型参数,模型的预测结果会对应不同 TPR 与 FPR。将不同的(FPR,TPR)构成的点绘制成曲线,就得到了 ROC 曲线。原创 2022-11-22 12:18:27 · 4463 阅读 · 0 评论 -
机器学习分类模型评价指标之Accuracy、Precision、Recall、F-Score、P-R Curve、AUC、AP 和 mAP
本文旨在说明其他机器学习模型的评价指标。原创 2022-11-21 01:31:22 · 8536 阅读 · 0 评论 -
机器学习分类模型评价指标之混淆矩阵
在机器学习领域,特别是在统计分类的问题中,混淆矩阵,也被称为 错误矩阵,是一种独特的表排列,可以可视化一个算法的性能,通常是监督学习(在非监督学习中,它通常被称为 匹配矩阵)。矩阵的每一行代表一个实际类中的实例,而每一列代表一个预测类中的实例,-这两种变体都可以在文献[11]中找到。这个名字源于这样一个事实,即它很容易看出系统是否混淆了两个类(即通常将一个类错误标记为另一个类)。看来行是真实或者预测都是可以的。原创 2022-11-18 12:43:28 · 3834 阅读 · 1 评论 -
批量归一化和层归一化
批量归一化是对每个特征/通道里的元素进行归一化。(不适合序列长度会变的NLP应用) 层归一化是对每个样本里面的元素进行归一化。ln = nn.LayerNorm(2)bn = nn.BatchNorm1d(2)X = torch.tensor([[1, 2], [2, 3]], dtype=torch.float32)# 在训练模式下计算X的均值和方差print('layer norm:', ln(X), '\nbatch norm:', bn(X))输出:layer norm: t原创 2022-01-27 21:18:00 · 9328 阅读 · 4 评论
分享