蓝桥杯算法训练 乘积最大(动态规划 C语言)

问题描述
  今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:

  设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大。

  同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:
有一个数字串:312, 当N=3,K=1时会有以下两种分法:
3 * 12=36
31 * 2=62
  这时,符合题目要求的结果是:31*2=62

  现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。

输入格式
程序的输入共有两行:
  第一行共有2个自然数N,K(6≤N≤40,1≤K≤6)
  第二行是一个长度为N的数字串。

输出格式
输出所求得的最大乘积(一个自然数)。

样例输入
4 2
1231
样例输出
62
8


解题思路

1.该题是动态规划类型的题目,能划分成小问题取得最优值
2.观察其状态得状态转移方程:
dp[i][j]=max(dp[i][j],dp[x][j-1] * num(x+1,i))

其中dp[i][j]表示i个数字字符(为了方便表示)j个乘号所组成的最大值。
例如给其数字串16851求dp[5][2]就需要求出:dp[2][1]、dp[3][1]、dp[4][1],求dp[4][1]就需要求出dp[3][0]、dp[2][0]、dp[1][0]。最后都取其中的最大值。

看不懂代码下面还有讲解

代码实现如下:

#include<stdio.h>
#define max(a,b) a>b?a:b
long long dp[<
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值