递归算法总结

1 递归算法初探

本段内容大部分摘自《linux C一站式编程》,作者是宋劲松老师,我认为这是目前看到的国内关于linux C编程的最好的一本技术书籍,强烈推荐!

关于递归的一个简单例子是求整数阶乘,n!=n*(n-1)!,0!=1 。则可以写出如下的递归程序:

int factorial(int n)
{
    if (n == 0)
        return 1;
    else {
        int recurse = factorial(n-1);
        int result = n * recurse;
        return result;
    }
}

factorial这个函数就是一个递归函数,它调用了它自己。自己直接或间接调用自己的函数称为递归函数。如果觉得迷惑,可以把factorial(n-1)这一步看成是在调用另一个函数--另一个有着相同函数名和相同代码的函数,调用它就是跳到它的代码里执行,然后再返回factorial(n-1)这个调用的下一步继续执行。

为了证明递归算法的正确性,我们可以一步步跟进去看执行结果。记得刚学递归算法的时候,老是有丈二和尚摸不着头脑的感觉,那时候总是想着把递归一步步跟进去看执行结果。递归层次少还算好办,但是层次一多,头就大了,完全不知道自己跟到了递归的哪一层。比如求阶乘,如果只是factorial(3)跟进去问题还不大,但是若是factorial(100)要跟进去那真的会烦死人。

事实上,我们并不是每个函数都需要跟进去看执行结果的,比如我们在自己的函数中调用printf函数时,并没有钻进去看它是怎么打印的,因为我们相信它能完成打印工作。我们在写factorial函数时有如下代码:

...
int recurse = factorial(n-1);
int result = n * recurse;
...

这时,如果我们相信factorial是正确的,那么传递参数为n-1它就会返回(n-1)!,那么result=n*(n-1)!=n!,从而这就是factorial(n)的结果。

当然这有点奇怪:我们还没写完factorial这个函数,凭什么要相信factorial(n-1)是正确的?如果你相信你正在写的递归函数是正确的,并调用它,然后在此基础上写完这个递归函数,那么它就会是正确的,从而值得你相信它正确。

这么说还是有点玄乎,我们从数学上严格证明一下factorial函数的正确性。刚才说了,factorial(n)的正确性依赖于factorial(n-1)的正确性,只要后者正确,在后者的结果上乘个n返回这一步显然也没有疑问,那么我们的函数实现就是正确的。因此要证明factorial(n)的正确性就是要证明factorial(n-1)的正确性,同理,要证明factorial(n-1)的正确性就是要证明factorial(n-2)的正确性,依此类推下去,最后是:要证明factorial(1)的正确性就是要证明factorial(0)的正确性。而factorial(0)的正确性不依赖于别的函数调用,它就是程序中的一个小的分支return 1;这个1是我们根据阶乘的定义写的,肯定是正确的,因此factorial(1)的实现是正确的,因此factorial(2)也正确,依此类推,最后factorial(n)也是正确的。

其实这就是在中学时学的数学归纳法,用数学归纳法来证明只需要证明两点:Base Case正确,递推关系正确。写递归函数时一定要记得写Base Case,否则即使递推关系正确,整个函数也不正确。如果factorial函数漏掉了Base Case,那么会导致无限循环。

2 递归经典问题

从上一节的一个关于求阶乘的简单例子的论述,我们可以了解到递归算法的精髓:要从功能上理解函数,同时你要相信你正在写的函数是正确的,在此基础上调用它,那么它就是正确的。下面就从几个常见的算法题来看看如何理解递归,这是我的一些理解,欢迎大家提出更好的方法。

2.1)汉诺塔问题

汉诺塔问题是个常见问题,就是说有n个大小不等的盘子放在一个塔A上面,自底向上按照从小到大的顺序排列。要求将所有n个盘子搬到另一个塔C上面,可以借助一个塔B中转,但是要满足任何时刻大盘子不能放在小盘子上面。

基本思想分三步,先把上面的N-1个盘子经C移到B,然后将最底下的盘子移到C,再讲B上面的N-1个盘子经A移动到C。总的时间复杂度f(n)=2f(n-1)+1,所以f(n)=2^n-1。

void hano(char a, char b, char c, int n) {
    if (n > 0) {
        hano(a, c, b, n-1);
        move(a, c);
        hano(b, a, c, n-1);
    }
}

void move(char a, char b)
{
    cout << a << "->" << b << endl;
}

2.2)求二叉树的深度

这里的深度指的是二叉树从根结点到叶结点最大的高度,比如只有一个结点,则深度为1,如果有N层,则高度为N。

int depth(struct node* root)  
{  
    if (root == NULL)  
        return 0;  
    else {  
        int lDepth = depth(root->left);  //获取左子树深度  
        int rDepth = depth(root->right); //获取右子树深度  
        return lDepth>rDepth? lDepth+1: rDepth+1; //取较大值+1即为二叉树深度  
    }  
}  

那么如何从功能上理解depth函数呢?我们可以知道定义该函数的目的就是求二叉树深度,也就是说我们要是完成了函数depth,那么depth(root)就能正确返回以root为根结点的二叉树的深度。因此我们的代码中depth(root->left)返回左子树的深度,而depth(root->right)返回右子树的深度。尽管这个时候我们还没有写完depth函数,但是我们相信depth函数能够正确完成功能。因此我们得到了lDepth和rDepth,而后通过比较返回较大值加1为二叉树的深度。如果不好理解,可以想象在depth中调用的函数depth(root->left)为另外一个同样名字完成相同功能的函数,这样就好理解了。注意Base Case,这里就是当root==NULL时,则深度为0,函数返回0

2.3)判断二叉树是否平衡

一颗平衡的二叉树是指其任意结点的左右子树深度之差不大于1。判断一棵二叉树是否是平衡的,可以使用递归算法来实现。

bool is_balanced(BinaryTreeNode* pRoot)
{
    if(pRoot == NULL) //基本情况,为空的话,返回true
        return true;
 
    int left = depth(pRoot->m_pLeft);
    int right = depth(pRoot->m_pRight);
    int diff = left - right; //计算左右子树深度之差
    if(diff > 1 || diff < -1) //如果深度之差大于1返回false
        return false;
 
    return is_balanced(pRoot->m_pLeft) && is_balanced(pRoot->m_pRight); //递归判断左右子树,注意是&&,即左右子树都必须是平衡的这棵二叉树才是平衡的
}

该函数的功能定义是二叉树pRoot是平衡二叉树,即它所有结点的左右子树深度之差不大于1。首先判断根结点是否满足条件,如果不满足,则直接返回false。如果满足,则需要判断左子树和右子树是否都是平衡二叉树,若都是则返回true,否则false。

上面代码性能不高,会重复遍历结点,一个改进的算法是采用后序遍历的方式遍历树的结点,在遍历到本结点前我们已经遍历完了它的左右子树,我们只需要在遍历的时候记录结点的深度,就可以一边遍历一边判断该结点是否是平衡的。代码如下:

bool is_balanced_2(BinaryTreeNode* pRoot, int* pDepth)
{
    if(pRoot == NULL)
    {
        *pDepth = 0;
        return true;
    }
 
    int left, right;
    if(is_balanced_2(pRoot->m_pLeft, &left) //左子树平衡
        && is_balanced_2(pRoot->m_pRight, &right)) //右子树平衡
    {
        int diff = left - right;
        if(diff <= 1 && diff >= -1)
        {
            *pDepth = 1 + (left > right ? left : right);
            return true;
        }
    }
 
    return false;
}

该函数功能定义是返回以pRoot为根的二叉树是否是平衡二叉树,同时把树的深度保存在pDepth指向的值中。基本情况是树为NULL,则深度为0,返回true。否则只有左右子树都是平衡的情况下,深度分别存在变量left和right中,判断左右子树的深度之差是否不大于1,如果是则返回true,注意还要设置树的深度值。

调用的函数定义如下:

bool IsBalanced(BinaryTreeNode* pRoot)
{
    int depth = 0;
    return is_balanced_2(pRoot, &depth);
}

2.4)排列算法

排列算法也是递归的典范,记得当初第一次看时一层层跟代码,头都大了,现在从函数功能上来看确实好理解多了。先看代码:

void perm(int a[], int k, int N) { //k为起始位置,N为数组大小
    if (k == N-1) { 
        output(a, N); //输出排列
    } else {
        for (int i=k; i<N; i++) {
            swap(a, i, k); //交换
            perm(a, k+1, N); //下一次排列
            swap(a, i, k); //恢复原来的序列
        }
    }
}

首先明确的是perm(a, k, N)函数的功能:输出数组a从位置k开始的所有排列,数组长度为N。这样我们在调用程序的时候,调用格式为perm(a, 0, N),即输出数组从位置0开始的所有排列,也就是该数组的所有排列。基础条件是k==N-1,此时已经到达最后一个元素,一次排列已经完成,直接输出。否则,从位置k开始的每个元素都与位置k的值交换(包括自己与自己交换),然后进行下一次排列,排列完成后记得恢复原来的序列。

假定数组a大小N=3,则程序调用perm(a, 0, 3)可以如下理解:
第一次交换0,0,并执行perm(a, 1, 3),执行完再次交换0,0,数组此时又恢复成初始值。
第二次交换1,0(注意数组此时是初始值),并执行perm(a, 1, 3), 执行完再次交换1,0,数组此时又恢复成初始值。
第三次交换2,0,并执行perm(a, 1, 3),执行完成后交换2,0,数组恢复成初始值。

也就是说,从功能上看,首先确定第0个位置,然后调用perm(a, 1, 3)输出从1开始的排列,这样就可以输出所有排列。而第0个位置可能的值为a[0], a[1],a[2],这通过交换来保证第0个位置可能出现的值,记得每次交换后要恢复初始值。

如数组a={1,2,3},则程序运行输出结果为:1 2 3 ,1 3 2 ,2 1 3 ,2 3 1 ,3 2 1 ,3 1 2 。即先输出以1为排列第一个值的排列,而后是2和3为第一个值的排列。

2.5)组合算法

组合算法也可以用递归实现,只是它的原理跟0-1背包问题类似。即要么选要么不选,注意不能选重复的数。完整代码如下:

#include<iostream>
using namespace std;
#define N 3  //数组大小为3
int select[N] = {0}; //选择数组,用于存储数组哪些数字被选中。
/*输出数组中选中的数*/
void output(int a[], int n)
{
    for (int i=0; i<n; i++) {
        if (select[i])
            cout << a[i] << " ";
    }
    cout << endl;
}
/*数组a从位置i开始选取k个数*/
void combination(int a[], int i, int k)
{
    if (i > N) return; //位置超出数组范围直接返回,否则非法访问会出段错误
    if (k == 0) {  //选取完了,输出选取的数字
        output(a, N);
    } else {
        select[i] = 1;  
        combination(a, i+1, k-1); //第i个数字被选取,从后续i+1开始选取k-1个数
        select[i] = 0;
        combination(a, i+1, k); //第i个数字不选,则从后续i+1位置开始还要选取k个数
    }
}

/*组合主函数,包括选取1到n个数字*/
void combination_helper(int a[], int n) {
    for (int k=1; k<=n; k++) {
        combination(a, 0, k);
    }
}

int main()
{
    int a[N] = {1, 2, 3};
    combination_helper(a, N);
    return 0;
}

2.6) 逆序打印字符串

这个比较简单,代码如下:

void printReverse(const char *str) {
  if (!*str)
    return;
  printReverse(str + 1);
  putchar(*str);
}

3 多说一句

对递归有兴趣的,还可以看看这篇文章,用递归实现链表逆序

参考资料

  • 宋劲松《Linux C编程》递归章节

 

--------------------------------------------------------------------------------------------------------------------------------------------------

递归实现斐波那契数列(一):

在数学上,斐波纳契数列以如下被以递归的方法定义: 
F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)

使用递归实现
很直观表示方式,用递归很容易实现:

function f($a)
{
    if ($a == 0 || $a == 1) {
        return 1;
    }
    return f($a-1) + f($a-2);
}

for($i = 0; $i < 70; ++$i)
{
    echo f($i).' ';
}
1
2
3
4
5
6
7
8
9
10
11
12
但是运行的时候,发现上面代码运行会超时:

递归其实是方便了程序员难为了机器。它只要得到数学公式就能很方便的写出程序。优点就是易理解,容易编程。但递归是用栈机制实现的,每深入一层,都要占去一块栈数据区域,对嵌套层数深的一些算法,递归会力不从心,空间上会以内存崩溃或超时而告终,而且递归也带来了大量的函数调用,这也有许多额外的时间开销。所以在深度大时,它的时空性就不好了。

那么如果非要用递归,有什么办法可以改进呢?

可以看到,在打印的过程中,比如求 f(6) 调用 f(5) 和 f(4)时,之前的某次循环其实已经算出来了 f(5) 和 f(4) ,不需要再算了。

可以使用一个数组,来保存之前的结果

function f($n, $arr)
{
    global $arr;
    if( isset($arr[$n]) ) {  //比 array_key_exits()效率高
        return $arr[$n];
    }
    return f($n-1, $arr) + f($n-2, $arr);
}
$arr = [
    0 => 1,
    1 => 1,
];
for($i = 0; $i < 1000000; ++$i)
{
    $arr[$i] = f($i, $arr);
    echo f($i, $arr).' ';
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
使用PHP7,打印1000000个也没有问题。

使用循环实现
<?php 
$arr[1] = 1;
for($i = 2;$i < 100;$i++)
{
    $arr[$i] = $arr[$i-1] + $arr[$i-2];
}
echo join(",",$arr);  //将数组合并为一个字符串输出
?>
1
2
3
4
5
6
7
8
非递归实现比递归效率高很多。

递归和循环的简单比较:
1、从程序上看,递归表现为自己调用自己,循环则没有这样的形式。
2、递归是从问题的最终目标出发,逐渐将复杂问题化为简单问题,并且简单的问题的解决思路和复杂问题一样,同时存在基准情况,就能最终求得问题,是逆向的。而循环是从简单问题出发,一步步的向前发展,最终求得问题,是正向的。
3、任意循环都是可以用递归来表示的,但是想用循环来实现递归(除了单向递归和尾递归),都必须引入栈结构进行压栈出栈。
4、一般来说,非递归的效率高于递归。而且递归函数调用是有开销的,递归的次数受堆栈大小的限制。

递归实现斐波那契数列(二):

简介      
斐波那契数列(Fibonacci Sequence),又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)。我用递归和迭代两种方法实现了斐波那契数列

实现代码(php)
<?php
 
class Fibonacci
{
 
    /**
     * Description:迭代方法获取fibonacci第n项数值
     *
     * @param int $n            
     * @return int
     */
    public static function fib_interation ($n)
    {
        $fib = array(); // 定义fibonacci数组
        
        if ($n < 0) {
            return 0;
        }
        
        for ($fib[0] = 0, $fib[1] = 1, $i = 2; $i <= $n; $i ++) {
            $fib[$i] = $fib[$i - 1] + $fib[$i - 2];
        }
        
        return $fib[$n];
    }
 
    /**
     * Description:递归方法获取fibonacci第n项数值
     *
     * @param int $n            
     * @return int
     */
    public static function fib_recursive ($n)
    {
        if ($n <= 0) {
            return 0;
        } elseif ($n == 1) {
            return 1;
        } else {
            return self::fib_recursive($n - 1) + self::fib_recursive($n - 2);
        }
    }
}
 
$fib1 = Fibonacci::fib_interation(5);
echo $fib1 . "\n";
 
$fib2 = Fibonacci::fib_recursive(10);
echo $fib2 . "\n";
 
?>

运行结果


缺点
今天看道这篇博客浏览量还挺高,因此重构了一下代码,半年前的水平确实差,代码看着就恶心,今天重构一下!
其次,编程之美上介绍了一种分治策略求fibonacci的方法,不过我没掌握,有兴趣的同学可以贴出实现代码讨论一下,建议c或者php!

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值