Focal Loss for Dense Object Detection

论文通过对比一阶段和二阶段检测算法结果的差异发现,样本不均衡是导致one-stage detectors效果不如two-stage detectors好的主要原因。因为后者的分类器是针对少量样本(如RPN得到的区域)进行学习后得到的性能较好的分类器,而一阶段分类器受到大量负样本损失值的影响,训练后的判定性能不如二阶段分类器。作者基于此重新优化了损失函数,进而解决样本不均衡带来的影响。

  • 论文中从二分类的交叉熵损失函数入手,形式如下。CE损失函数有个明显的特点是即使预测置信度较大时,由ce得到的损失值也不小。这样总的损失值中数量较少类别的损失值将占很小比例,因为大量预测置信度较大样本的损失值求和后的值依然很大。(论文是想通过损失函数解决样本数量不均衡的问题,只是此处将易分类样本和样本数量多的类别间接划上了等号)。

CE(p,y)=\left\{\begin{matrix} -log(p) \\ -log(1-p)) \end{matrix}\right. \begin{matrix} if y=1\\otherwise \end{matrix}

  • 通常处理样本不均衡问题时,会在对应类别的损失值前添加权重\alpha。其中\alpha由样本频率或交叉验证得到。此时损失函数的形式如下。

CE(p{_{t}})=-\alpha {_{t}}log(p{_{t}})

  • 上述损失函数中仅考虑了正负样本数量带来的影响,并没有考虑由样本分类的难易程度带来的影响。因次才有了本论文对损失函数的进一步改进,得到如下损失函数。

FL(p{_{t}})=-(1-p{_{t}}){^{\gamma }}log(p{_{t}})      

改进后的Focus Loss有两个性质:误分类样本的损失值几乎不受影响,另一方面减小了正确分类且分类置信度较高样本损失值的权重;\gamma可平滑的调节易分类样本损失值的权重,即随着\gamma的增大,调节因子(1-p{_{t}}){^{\gamma }}的值也在增加。

 

交叉熵损失函数的基本形式不变,但是可以通过修改预测概率p{_{t}}的值(如人脸损失函数的各种变体)和损失值的权重(如Focus Loss)对其进行改进,从而得到分类性能更好的网络。

 

参考文献:

  1. Focal Loss for Dense Object Detector

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值