可以从以下多个方面优化数据库设计提高数据库查询效率
a. 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
b. 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: select id from t where num=0
c. 并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
d. 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
e. 应尽可能的避免更新索引数据列,因为索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新索引数据列,那么需要考虑是否应将该索引建为索引。
f. 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
g. 尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
h. 尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
i. 避免频繁创建和删除临时表,以减少系统表资源的消耗。
j. 临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
k. 在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
l. 如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
可以从以下多个方面比较数据库写入效率:
一、普通方式
普通采用jdbc插入
时间:10万条:16672ms 折合100万条 = 166.72秒
二、事务提交
jdbc用事务进行提交 --> 事务提交是把语句一起执行
时间:10万条:13558ms 折合100万条 = 135.5秒
三、批处理
内部实现是是把 values 后面的插入值变成成 values(,,,),(,,,,)
特别注意:需要url参数加:rewriteBatchedStatements=true
url范例: jdbc:mysql://127.0.0.1/XXX?characterEncoding=UTF-8&rewriteBatchedStatements=true
时间 : 10万条:1273ms 折合100万条 = 12.73秒
四、事务+批处理并且分批执行
结论:加事务时间无影响,但是分批次能提供效率的增加
时间:100万条:9900ms 折合100万条 = 9.99秒
时间:500万条:46943ms = 47秒
综合以上比较结论是: 普通方式 < 事务提交 < 批处理 < 事务+批处理
必要的话配合存储过程应该会进一步提升效率,,,
最后就是在系统架构设计上实施分库分表,再配合外部存储比如redis、缓存、队列等优化对数据库的压力,,,