如何提高数据库读写效率

可以从以下多个方面优化数据库设计提高数据库查询效率

a. 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

b. 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: select id from t where num=0

c. 并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

d. 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

e. 应尽可能的避免更新索引数据列,因为索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新索引数据列,那么需要考虑是否应将该索引建为索引。

f. 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

g. 尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

h. 尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

i. 避免频繁创建和删除临时表,以减少系统表资源的消耗。

j. 临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

k. 在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

l. 如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

 

可以从以下多个方面比较数据库写入效率:

一、普通方式 

       普通采用jdbc插入

       时间:10万条:16672ms 折合100万条 = 166.72秒

二、事务提交 

       jdbc用事务进行提交  --> 事务提交是把语句一起执行

       时间:10万条:13558ms 折合100万条 = 135.5秒

三、批处理

       内部实现是是把 values 后面的插入值变成成 values(,,,),(,,,,)
       特别注意:需要url参数加:rewriteBatchedStatements=true
       url范例: jdbc:mysql://127.0.0.1/XXX?characterEncoding=UTF-8&rewriteBatchedStatements=true
       时间 : 10万条:1273ms 折合100万条 = 12.73秒 

四、事务+批处理并且分批执行

       结论:加事务时间无影响,但是分批次能提供效率的增加

       时间:100万条:9900ms 折合100万条 = 9.99秒

       时间:500万条:46943ms = 47秒

综合以上比较结论是: 普通方式 < 事务提交  < 批处理 < 事务+批处理

 

必要的话配合存储过程应该会进一步提升效率,,,

 

最后就是在系统架构设计上实施分库分表,再配合外部存储比如redis、缓存、队列等优化对数据库的压力,,,

 

 

1. 30%的系统效率提升的数据来源可能是通过对系统的能测试和比较获得的,比如在同样的负载下,新系统的响应时间更短,吞吐量大等。 2. 数据库索引类型包括主键索引、唯一索引、普通索引、全文索引等。 3. GROUP BY是SQL语句中用于对查询结果进行分组的关键字。它可以将查询结果按照指定的列进行分组,并计算每个组的聚合值,如COUNT、SUM等。 4. MHA是一个用于MySQL高可用性的解决方案,可以实现自动故障检测、主从切换等功能。MHA通过监控MySQL Master服务器的状态,当Master出现故障时,自动将Slave提升为新的Master,从而保证服务的连续性。 5. 生产环境中Redis的版本会根据实际情况进行选择,比如需要支持集群模式、主从复制等功能。 6. Redis Cluster集群一般采用6个节点的架构,其中3个为Master节点,3个为Slave节点,Master和Slave节点分别均匀分布在不同的物理服务器上。 7. 磁盘IO是指计算机向磁盘读写数据的过程,包括磁盘读写速度、磁盘空间等指标。 8. 在生产环境中,K8S的版本选择应该根据实际情况进行评估和选择,比如需要支持的功能、稳定性等。 9. Deployment是K8S中用于部署应用程序的资源对象,而DaemonSet是一种特殊的Deployment,用于在每个节点上运行一个Pod。 10. Service是K8S中用于提供服务访问的资源对象,它可以将后端Pod的IP地址和端口暴露给外部。Service有三种类型:ClusterIP、NodePort、LoadBalancer。 11. NodePort和ClusterIP都是Service的类型,但NodePort会将Pod的端口映射到Node的端口上,而ClusterIP只是将Pod的IP地址和端口暴露给集群内部。 12. Service的转发实现是通过K8S的iptables规则或者IPVS规则实现的。 13. kube-proxy有两种模式:iptables模式和IPVS模式。Iptables模式是默认模式,而IPVS模式可以提高Service的性能和稳定性。 14. Calico和Flannel都是K8S中常用的网络插件,Calico通常使用BGP协议实现网络互联,而Flannel则使用VXLAN协议实现网络互联。 15. IPVS和iptables都是Linux系统中常用的负载均衡工具。LVS是一种高性能的负载均衡软件,可以通过IPVS实现流量转发。 16. Zabbix可以通过监控Docker API获取容器的状态信息,也可以通过Zabbix Agent在容器内部获取监控数据。 17. 在实际生产环境中,Ansible可以维护数百台甚至上千台服务器。 18. Ansible模块自带的事实功能包括:ansible_distribution、ansible_architecture、ansible_os_family等。 19. 一个生产环境中的Playbook可能包括多个任务,比如部署应用程序、安装依赖、配置环境变量等。 20. 调研某个应用可以从官方文档、社区论坛、用户手册、源代码等多个方面入手,还可以通过搭建测试环境进行实际测试和验证。 21. 如果客户应用系统打不开,可以先检查服务器的网络连接是否正常,同时可以查看应用日志和系统日志,尝试定位问题。 22. 如果客户应用打开比较慢,可以先检查应用程序的配置是否正确,同时可以通过性能测试和监控工具定位问题。 23. 数据库缓存优化可以使用Memcached、Redis、EHCache等技术。 24. 提高数据库读写效率可以使用索引、分区、缓存等技术。同时,还可以采用读写分离、负载均衡等技术来提高数据库的性能和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值