AI可以解构一切压缩过的通用解决方案

之前发过两条即刻,如下,稍微展开说说。

学科/专业/行业/岗位… 对 AI 来说毫无意义,这些原本就是人类为了降低自己的认知负担刻意划分的。

几乎所有的方法论,都是在特定前提条件下,压缩出来的做事套路,是为了迁就人类可怜的认知能力的,如果 AI 足够强,那就不再需要任何方法论,完全可以“一事一议”,这就非常解构主义。

让我们回到知识的起点,学科/专业/课程,原本都是不存在的,我们可以用孩子上学的进展来重温人类认识的发展,小学是《科学》、中学变成了《物理》《化学》《生物》等等,大学如果专门学化学,又有了《无机化学》、《有机化学》、《物理化学》等等……可以看出来,这种划分其实挺“人为”的,最后总会发现在边缘处不那么清晰,于是出现很多“交叉学科”。

AI可以帮助人类突破认知能力的局限性,把越来越多的学科再整合回源初的模样,变成PBL式的学习,这里的PBL,不是Project Based Learning,而是 Problem Based Learning。

类似的,组织里的岗位设置演化,我们也可以用创业团队从一个人开始发展到很多人的过程来重温。最初肯定没那么多细分的岗位,一个人的时候什么都干,几个人的时候,每个人身兼数职,组织大了,需要批量的招聘做特定事情的人了,才会设定岗位,从销售、客服,到程序员、产品经理……方便批量引入。

随着AI越来越强大,理论上,可以根据任务,要做的事情来给多个AI更加灵活的分工,即生成式的、一次性的岗位,从而产出更适合的产品形态。

这里,可以关联到康威定律的一个观点——组织交付的产品架构和组织结构是同构的——根据最适合的交付形态来动态生成组织结构(分工)显然是更合理的。

而行业/领域,也同理,越来越按照问题划分,有趣的是,AI、互联网本身并不是这个定义下的行业/领域,而是一种解决方案。

综上,无论是学科的演进、岗位的设置,还是行业的划分……其底层逻辑都是对复杂世界的一种归纳与简化。这些“压缩知识”在人类主导的时代是效率的基石,但也无可避免地带来了信息损失和思维定式。

AI的强大算力,正像一个完美的“解压缩”工具,能够将这些被简化的知识还原,针对每一个具体情境,生成更优的、高度定制化的独特解法。那么,在这场由AI驱动的“解压缩”浪潮中,人类的独特价值何在?

答案或许不在于提供解决方案,而在于问题本身。

提出更好的问题:AI能回答“是什么”,但人类需要追问“为什么”和“又如何”。我们通过好奇心、想象力和人文关怀,去探索那些尚未被定义的需求和挑战。

评判解法的优劣:AI可以追求更优的解,但“优”的标准由谁定义?人类需要注入伦理、道德和价值观,确保技术的方向符合长远的福祉。

承担最终的责任:在充满不确定性的世界里,由人类来做出最终决策并承担其后果,这既是权利,也是责任。

_________

苏杰(iamsujie),产品创新顾问,《人人都是产品经理》丛书作者,良仓孵化器创始合伙人,阿里8年产品经理,集团产品大学负责人。如需产品经理/产品思维/产品创新相关领域的培训咨询服务,欢迎联系这个微信(13758212411)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值