【BZOJ】【P1965】【AHOI2005】【SHUFFLE 洗牌】【题解】【数论】

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012732945/article/details/24871933

传送门:

http://www.lydsy.com/JudgeOnline/problem.php?id=1965

开始以为是群论……YY了好久怎样找轮换……

后来发现是数论……

x* 2^m=l (mod n+1)

解x

快速幂+扩欧0ms秒杀……

Code:

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long lld;
lld n,m,l;
lld exgcd(lld a,lld b,lld &x,lld &y){
	if(!b){
		x=1;y=0;
		return a;
	}else{
		lld g=exgcd(b,a%b,x,y);
		lld t=x;
		x=y;
		y=t-a/b*y;
		return g;
	}
}
lld gcd(lld a,lld b){
	while(b){
		lld t=a;
		a=b;
		b=t%b;
	}
	return a;
}
lld power(lld x,lld k){
	lld ans=1;
	for(;k;k>>=1){
		if(k&1)ans*=x;
		x*=x;
		if(x>n)x%=(n+1);
		if(ans>n)ans%=(n+1);
	}
	return ans;
}
int main(){
	cin>>n>>m>>l;
	m=power(2,m);
	//x*m=l(mod n+1) 
	//mx + (n+1) y =l
	//m'x+(n+1)' y=l'
	lld x,y;
	n=n+1;
	lld d=gcd(m,n);
	m/=d;n/=d;l/=d;
	exgcd(m,n,x,y);
	x=x*l%n;
	while(x<0)x+=n;
	cout<<x<<endl;
	return 0;
}


阅读更多
换一批

没有更多推荐了,返回首页