自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 资源 (1)
  • 收藏
  • 关注

原创 写程序学ML:决策树算法原理及实现(四)

决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。

2017-09-24 19:23:38 2286

原创 写程序学ML:决策树算法原理及实现(三)

决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。

2017-09-24 19:16:19 2197

原创 写程序学ML:决策树算法原理及实现(二)

决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。

2017-09-24 19:03:16 2294

原创 写程序学ML:决策树算法原理及实现(一)

决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。

2017-09-24 17:52:15 2999

原创 写程序学ML:K近邻(KNN)算法原理及实现(二)

K近邻算法是分类数据最简单最有效的算法,这里通过三个例子讲述了如何使用K近邻算法构造分类器。K近邻算法是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。K近邻算法必须保存全部数据集,如果训练数据集很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。

2017-09-14 08:02:59 7844

原创 写程序学ML:K近邻(KNN)算法原理及实现(一)

K近邻(k-NearestNeighbor,KNN)算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

2017-09-13 07:38:30 3889 1

win7下python27及PIL库

win7下可以使用的python2.7版本及PIL库。具体安装可以参考blog:http://blog.csdn.net/icamera0/article/details/50620835

2016-02-02

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除