- 博客(6)
- 资源 (1)
- 收藏
- 关注
原创 写程序学ML:决策树算法原理及实现(四)
决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。
2017-09-24 19:23:38
2286
原创 写程序学ML:决策树算法原理及实现(三)
决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。
2017-09-24 19:16:19
2197
原创 写程序学ML:决策树算法原理及实现(二)
决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。
2017-09-24 19:03:16
2294
原创 写程序学ML:决策树算法原理及实现(一)
决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。
2017-09-24 17:52:15
2999
原创 写程序学ML:K近邻(KNN)算法原理及实现(二)
K近邻算法是分类数据最简单最有效的算法,这里通过三个例子讲述了如何使用K近邻算法构造分类器。K近邻算法是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。K近邻算法必须保存全部数据集,如果训练数据集很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。
2017-09-14 08:02:59
7844
原创 写程序学ML:K近邻(KNN)算法原理及实现(一)
K近邻(k-NearestNeighbor,KNN)算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。
2017-09-13 07:38:30
3889
1
win7下python27及PIL库
2016-02-02
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝