Icefox的博客

生活不止眼前的苟且,还有诗和远方。

排序:
默认
按更新时间
按访问量

bzoj4944 [Noi2017]泳池(dp,概率与期望)

首先把求最大面积恰为K的概率转化成 求最大面积<=K的概率-最大面积<=K-1的概率 我们注意到最底层一定是选了若干段<=K的连续段,于是我们可以枚举连续段的长度来dp。 我们考...

2018-06-28 22:20:52

阅读数:45

评论数:0

bzoj2830/luogu3830 随机树(期望与概率dp)

首先第一问,我们设f[i]f[i]f[i]表示i个叶子的树的叶子平均深度的期望 那么有转移f[i]=f[i−1]∗(i−1)−f[i−1]+(f[i−1]+1)∗2if[i]=f[i−1]∗(i−1)−f[i−1]+(f[i−1]+1)∗2if[i]=\frac{f[i-1]*(i-1)-f[i...

2018-06-15 16:19:57

阅读数:82

评论数:0

bzoj4872 [Shoi2017]分手是祝愿(贪心+期望dp)

首先考虑k=n的话最优解是怎样的。 因为拉一盏灯只会影响到比它标号小的灯和自己。 所以我们按标号从大到小考虑。如果一盏灯还亮着就必须拉,并且把影响到的灯改变。这样就可以得到目前状态的最小操作次数了。 设f[i]表示剩余最小操作次数为i时还期望操作多少步,可以列出方程: f[i]=in∗f[...

2018-06-12 20:29:26

阅读数:64

评论数:0

bzoj4036 [HAOI2015]按位或(概率与期望+fmt)

vfk的论文题。具体可以参见国家集训队2015论文集 吕凯风的《集合幂级数的性质与应用及其快速算法》 这题就是求集合并卷积,用快速莫比乌斯变换即可。 答案就是∑k=1ook∗(pk[U]−pk−1[U])∑k=1ook∗(pk[U]−pk−1[U])\sum\limits_{k=1}^{oo}...

2018-06-12 15:08:24

阅读数:68

评论数:0

bzoj3450 Tyvj1952 Easy(期望与概率+dp)

如果是多了一个o,就会使得答案期望增加2L+1. 变成线形的就可以期望dp了。 #include <bits/stdc++.h> using namespace std; #define ll long long #define inf 6e14 #...

2018-06-11 16:04:47

阅读数:106

评论数:0

bzoj2134 单选错位(概率与期望)

考虑答对第i题的概率,设第i-1题答案有a个,第i题答案有b个,那么一共有ab种可能,而答对的可能只有min(a,b)种,因此答对这一题的概率就是1/max(a,b)。每一题都相互独立,分别计算加起来就是期望。 #include <bits/stdc++.h&amp...

2018-06-09 17:22:25

阅读数:50

评论数:0

bzoj4820 [Sdoi2017]硬币游戏(期望与概率+Gauss+kmp)

#include <bits/stdc++.h> using namespace std; #define ll long long #define inf 0x3f3f3f3f #define N 310 inline int read...

2018-05-26 23:23:17

阅读数:52

评论数:0

bzoj2707 [SDOI2012]走迷宫(期望dp+tarjan缩点+Gauss)

令f[i]表示从i到T的期望步数。 我们有转移f[x]=∑yf[y]du[x]+1f[x]=∑yf[y]du[x]+1f[x]=\sum_y\frac{f[y]}{du[x]}+1 因为存在环所以scc内只能Gauss来求。 于是我们先tarjan缩一波点,然后倒拓扑序dp即可。 f[T]...

2018-05-26 22:14:51

阅读数:62

评论数:0

bzoj3640 JC的小苹果(期望dp+Gauss+矩阵求逆)

我们有比较显然的期望dp,f[x][i]表示到x点血量为i的期望次数。 我们有转移f[x][i]=∑yf[y][i+w[x]]du[y]f[x][i]=∑yf[y][i+w[x]]du[y]f[x][i]=\sum_y\frac{f[y][i+w[x]]}{du[y]} 直接高斯消元复杂度O(...

2018-05-25 23:10:21

阅读数:63

评论数:0

bzoj3143 [Hnoi2013]游走(期望dp+高斯消元+贪心)

我们计算出每条边被经过的期望次数,次数越多的标号越小即可。 考虑一条边被经过的次数怎么求,设这条边为(x,y),f[x]表示经过点x的期望次数,du[x]表示x的度数。 那么经过这条边的期望次数就是f[x]/du[x]+f[y]/du[y]f[x]/du[x]+f[y]/du[y]f[x]/d...

2018-05-18 10:26:24

阅读数:38

评论数:0

bzoj2337 [HNOI2011]XOR和路径(期望dp+按位+高斯消元)

我们把异或拆开,一位位的考虑,这样边权就只有0/1了。 考虑期望dp,f[i]表示i节点到n的路径异或和为1的概率。 那么我们有转移:如果i指向y,且边权为1,f[i]+=(1−f[y])/du[i]f[i]+=(1−f[y])/du[i]f[i]+=(1-f[y])/du[i] 如果i指向...

2018-05-17 23:05:45

阅读数:37

评论数:0

CF739E Gosha is hunting(期望dp+wqs二分)

首先我们有朴素dp,f[i][a][b]表示对于前i个小精灵用a个a球,b个b球可以获得的最大期望值。 枚举第i个小精灵的方式转移即可。O(n3)O(n3)O(n^3) 考虑优化这个dp,我们发现这个问题好像还可以费用流…诶,他好像是凸的…诶…wqs二分! 好像两维都可以wqs二分呢!orz...

2018-05-16 10:45:21

阅读数:169

评论数:0

bzoj5340/loj2552「CTSC2018」假面(期望与概率+背包dp)

这签到题送我见祖宗了啊qaq 全世界都A了这题,像我这样只拿了10分的傻子怕是不多了吧。我们考虑怎么求最后的期望生命值。 因为减到0血就不减了,所以我们不能直接每次期望算,只好考虑一个背包转移。 dp[i][j]表示i减了j滴血的概率。减了K[i]滴血就代表i死了。 每次攻击时对x做一个O...

2018-05-08 21:17:46

阅读数:234

评论数:1

bzoj3270 博物馆(概率dp+高斯消元)

设dp[i][j]表示第一个人在i,第二个人在j的概率。 我们有转移: dp[i][j]=dp[i][j]∗p[i]∗p[j]+∑kmp[k][i]∗p[j]∗(1−p[k])/du[k]+∑kmp[k][j]∗p[i]∗(1−p[k])/du[k]+∑k1∑k2mp[k1][i]∗mp[k2...

2018-05-08 20:11:50

阅读数:59

评论数:0

bzoj1778 [Usaco2010 Hol]Dotp 驱逐猪猡(概率dp+高斯消元)

设dp[i]为到点i的概率。则我们有转移 dp[i]=∑jdp[j]∗(1−p)∗mp[j][i]/du[j]dp[i]=\sum\limits_{j}dp[j]*(1-p)*mp[j][i]/du[j] 对于点1还要额外加1. 但是因为转移是带环的,我们没法转移。 我们采用高斯消元,解这...

2018-05-08 20:04:38

阅读数:56

评论数:0

bzoj2553 [BeiJing2011]禁忌(ACAM+概率dp+矩阵快速幂)

先把所有禁忌串建成ACAM,搞出Trie图。然后我们首先对于一个字符串,他的伤害是多少,就可以转化成选最多的线段两两不相交。这个问题可以贪心地按右端点排序后能取就取。体现在ACAM上就是走到一个结束节点就返回根,++ans。f[i][j]表示长度为i的串匹配到ACAM的节点j的伤害期望值。然后长度...

2018-04-19 17:11:09

阅读数:53

评论数:0

bzoj1444 [Jsoi2009]有趣的游戏(ACAM+矩阵+概率dp)

给定n个长度为l的模式串,现在要用前m个大写字母生成一个随机串,每个字符有自己的出现几率,第一次出现的字符串获胜,求最终每个字符串的获胜几率建出ACAM,搞出Trie图,弄出转移矩阵: 如果某个节点是模式串结尾那么这个节点只向自己连一条概率为1的出边(因为只要一走到结尾节点游戏就停止了)否则的话...

2018-03-23 21:09:00

阅读数:105

评论数:0

bzoj1076 [SCOI2008]奖励关(期望dp+状压dp)

期望dp就要倒着做。。。 dp[i][S],表示前i-1轮过后,目前的宝物获得状态是S,在i~k轮能获得的最大期望。那么答案就是dp[1][0]。

2018-01-30 14:34:08

阅读数:149

评论数:0

bzoj3470 Freda’s Walk(期望dp+概率dp+拓扑序+数学)

先正着拓扑序一遍,求出p[i],表示从1出发到达i点的概率。 然后倒着拓扑序一遍,求出f[i],表示从i开始走的期望步数。 这时候的f[1]就是不删边时的期望步数了。 我们考虑如果删掉边x->y,w,对答案有什么影响。 显然对x之前的点是没有任何影响的。 原本的f[x]=(f[y]...

2018-01-13 23:20:00

阅读数:151

评论数:0

bzoj4318 OSU!(期望dp)

e1[i],表示长度为i的串,末尾连续1的个数的期望。 e2[i],表示长度为i的串,末尾连续1的个数的平方的期望。 e2[i]=(e2[i−1]+2∗e1[i−1]+1)∗pe2[i]=(e2[i-1]+2*e1[i-1]+1)*p 为什么呢? 假设一共有n种情况,末尾1的个数分别为xi...

2018-01-10 22:34:24

阅读数:182

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭