vijos1523 [NOI2002]贪吃的九头龙(树形dp)

首先无解的情况,只可能是n-k< m-1,直接判断即可。
然后考虑m>=3的情况,即一个大头,两个以上的小头,我们给大头分配k个果子,剩下的都让小头去吃,一定可以使得这些小头不产生难受值(考虑一条边,我们让不同的两个小头去吃这条边所连接的两个果子即可),因此总的难受值,其实就是大头产生的难受值,问题转化为给大头分配k个果子(一定要有1),产生的最小难受值为多少。考虑树形dp,我们需要知道以i为根的子树中给大头分配了几个,以及转移时根是否被吃,因此设计状态f[i][j][0/1],表示以i为根的子树,大头吃了j个的最少难受值,[0]-i被大头吃了,[1]-i没被大头吃 。转移为:
令y为i的一个儿子。则
f[i][j][1]=min{f[y][k][0]+tmp[j-k][1],f[y][k][1]+tmp[j-k][1]+w[y][i]| 0<=k<=min{j,kk}}
f[i][j][0]=min{f[y][k][0]+tmp[j-k][0]+(m==2)*w[y][i],f[y][k][1]+tmp[j-k][0])| 0<=k<=min{j,kk}}

tmp[j][0/1]表示的是对于已经做完的儿子,给大头分配了j个的最小难受值。(这一步相当于将一颗多叉树转化成了一颗二叉树来进行树形dp转移)
大家可能也注意到了,我们还没有讨论m==2的情况,其实从转移中我已经考虑了m==2的情况。m==2时,就是说对于每个点,我们只有两种选择,分配给大头,分配给小头,而分配给小头的点如果相连,则一定会产生难受值,体现在我们的转移上,就是i没被大头吃,且y也没被大头吃,则w[y][i]是要加进答案的。
还有些细节见代码吧。

#include <bits/stdc++.h>
using namespace std;
#define N 310
#define ll long long
#define inf 0x3f3f3f3f
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,m,kk,num=0,h[N],f[N][N][2],fa[N];//f[i][j],以i为根的子树,大头吃了j个的最少难受值,[0]-i被大头吃了,[1]-i没被大头吃 
struct edge{
    int to,next,val;
}data[N<<1];
void dfs(int x){
    int tmp[N][2];
    f[x][0][0]=f[x][1][1]=0;
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;if(y==fa[x]) continue;
        fa[y]=x;dfs(y);memcpy(tmp,f[x],sizeof(tmp));//记录兄弟信息 
        memset(f[x],inf,sizeof(f[x]));//每次都要清零,只考虑一个儿子时可能比较小,考虑所有儿子时则不一定能实现这个值 
        for(int j=0;j<=kk;++j){
            for(int k=0;k<=kk&&k<=j;++k){
                f[x][j][1]=min(f[x][j][1],min(f[y][k][0]+tmp[j-k][1],f[y][k][1]+tmp[j-k][1]+data[i].val));
                f[x][j][0]=min(f[x][j][0],min(f[y][k][0]+tmp[j-k][0]+data[i].val*(m==2),f[y][k][1]+tmp[j-k][0]));
            }
        }
    }
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();m=read();kk=read();
    if(n-kk<m-1){puts("-1");return 0;}
    for(int i=1;i<n;++i){
        int x=read(),y=read(),val=read();
        data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].val=val;
        data[++num].to=x;data[num].next=h[y];h[y]=num;data[num].val=val;
    }memset(f,0x3f,sizeof(f));dfs(1);
    printf("%d\n",f[1][kk][1]);
    return 0;
}
发布了1239 篇原创文章 · 获赞 36 · 访问量 27万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览