定制容器tensorflow serving镜像,并部署训练好模型文件
1.手动定制本地已经训练模型的镜像(使用可用于开发的镜像dev)
1.1 下载centos镜像,启动容器,进入容器
# 下可用于后期开发的镜像
[root@aiserver ~]# docker pull tensorflow/serving:latest-dev-gpu
# 启动容器
[root@aiserver ~]# docker run -it -d --name serving-base tensorflow/serving:latest-dev-gpu
# 进入容器
[root@aiserver ~]# docker exec -it serving-base /bin/bash
[root@d72250ecaa5e /]# ifconfig
bash: ifconfig: command not found
- /bin/bash: 指进入容器时执行的命令(command)
1.2. 配置容器内软件包,开启ssh服务及开机启动配置
[root@d72250ecaa5e /]# apt-get install openssh-server net-tools -y
[root@d72250ecaa5e /]# mkdir -pv /var/run/sshd
# 进入'/var/run/sshd'文件夹
[root@d72250ecaa5e /]# cat ./auto_sshd.sh
#增加可执行权限
[root@d72250ecaa5e /]# chmod +x /auto_sshd.sh
[root@d72250ecaa5e /]# echo "root:iloveworld" | chpasswd
生成ssh 主机dsa 密钥(不然ssh 该容器时,会出现错误。)
遇到输入Enter same passphrase again:时候,直接回车跳过
[root@d72250ecaa5e /]# ssh-keygen -t dsa -f /etc/ssh/ssh_host_dsa_key
[root@d72250ecaa5e /]# ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key
我们加一个history记录的时间功能吧,这样方便后期查看
echo 'export HISTTIMEFORMAT="%F %T `whoami` "' >> /etc/profile

本文档详细介绍了如何手动定制基于CentOS的Docker镜像,用于部署本地训练的模型my model。首先,下载CentOS镜像并启动容器,配置软件包、SSH服务和开机启动配置。接着,将模型复制到容器内,打包成新镜像。然后,通过Dockerfile自动化定制docker-tf-gpu镜像,包括创建Dockerfile、构建镜像,并查看和启动容器。整个过程旨在简化TensorFlow Serving的模型部署流程。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=105377663&d=1&t=3&u=2fc26af3cbe145aeb82ca8e45c35ad23)
302

被折叠的 条评论
为什么被折叠?



