墨尘的模型部署3--nvidia-docker实现tensorflow serving单模型文件部署(三)

本文档详细介绍了如何手动定制基于CentOS的Docker镜像,用于部署本地训练的模型my model。首先,下载CentOS镜像并启动容器,配置软件包、SSH服务和开机启动配置。接着,将模型复制到容器内,打包成新镜像。然后,通过Dockerfile自动化定制docker-tf-gpu镜像,包括创建Dockerfile、构建镜像,并查看和启动容器。整个过程旨在简化TensorFlow Serving的模型部署流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.手动定制本地已经训练模型的镜像(使用可用于开发的镜像dev)

1.1 下载centos镜像,启动容器,进入容器
# 下可用于后期开发的镜像
[root@aiserver ~]# docker pull tensorflow/serving:latest-dev-gpu
# 启动容器
[root@aiserver ~]# docker run -it -d --name serving-base tensorflow/serving:latest-dev-gpu
# 进入容器
[root@aiserver ~]# docker exec -it serving-base /bin/bash
[root@d72250ecaa5e /]# ifconfig
bash: ifconfig: command not found
  • /bin/bash: 指进入容器时执行的命令(command)
1.2. 配置容器内软件包,开启ssh服务及开机启动配置
[root@d72250ecaa5e /]#  apt-get install openssh-server net-tools -y
[root@d72250ecaa5e /]# mkdir -pv /var/run/sshd 
# 进入'/var/run/sshd'文件夹  
[root@d72250ecaa5e /]# cat ./auto_sshd.sh 
#增加可执行权限
[root@d72250ecaa5e /]# chmod +x /auto_sshd.sh 

[root@d72250ecaa5e /]# echo "root:iloveworld" | chpasswd

生成ssh 主机dsa 密钥(不然ssh 该容器时,会出现错误。)
遇到输入Enter same passphrase again:时候,直接回车跳过

[root@d72250ecaa5e /]# ssh-keygen -t dsa -f /etc/ssh/ssh_host_dsa_key
[root@d72250ecaa5e /]# ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key

我们加一个history记录的时间功能吧,这样方便后期查看

echo 'export HISTTIMEFORMAT="%F %T `whoami` "' >> /etc/profile
1.3. 将训练好的模型my model复制到名为serving_base容器内
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值