Data Virtualization in WPF and beyond

Introduction

How do you show a 100,000-item list in WPF? Anyone who tried to deal with such a volume of information in a WPF client knows that  it takes some careful development in order to make it work well.

Getting the data from where it is (a remote service, a database) to where it needs to be (your client) is one part of the problem. Getting WPF controls to display it efficiently is another part. This is especially true for controls deriving from ItemsControl like ListView and the newly released DataGrid, since these controls are likely to be served large data sets.

One can question the usefulness of displaying hundreds of thousands of rows in a ListView. There is, however, always one good reason: the customer requests it. And the customer is king, even if the reasoning behind the request is slightly flawed. So, faced with this challenge, what can we do as WPF developers to make both the coding and user experience as painless as possible?

As of .NET 3.5SP1, this is what you can do today to improve performance in ItemsControl and derivatives:

-          Make the number of UI elements to be created proportional to what is visible on screen using VirtualizingStackPanel.IsVirtualizing="True".

-          Have the framework recycle item containers instead of (re)creating them each time, by settingVirtualizingStackPanel.VirtualizationMode="Recycling".

-          Defer scrolling while the scrollbar is in action by using ScrollViewer.IsDeferredScrollingEnabled="True".  Note that this only improvesperceived performance, by waiting until the user releases the scrollbar thumb to update the content. However, we will see that it also improves actual performance in the scenarios described below.

All these things take care of the user interface side of the equation. Sadly, nothing in WPF takes care of the data side.  Data virtualization is on the roadmap for a future release of WPF, but will not be available in the upcoming .NET 4.0, according to Samantha MSFT (http://www.codeplex.com/wpf/Thread/View.aspx?ThreadId=40531).

All is not lost, however. I will show you various ways to have your favorite ItemsControl scroll through hundreds of thousands, even millions of items with little effort. Of course, every solution has a price tag, but for most situations it will be acceptable. Promised!

My “solutions” for data virtualization in WPF relies on two key insights and two usage assumptions. The two key insights are:

1.       It is possible to automatically construct for an instance of any type T an equivalent lightweight object which, at least for WPF’s binding engine, is indistinguishable from T in most binding scenarios involving binding to properties of T.

2.       ItemsControl’s access patterns for its item source are highly predictable and need at any time only a fraction of the entire data set. The size of this data set is proportional to the number of visible rows, not to the total number of rows in the data set.

Two approaches are derived from these two key insights: the item virtualization approach, where individual objects are loaded on demand, and the collection virtualizationapproach, where the entire data set is virtualized. These two approaches virtually (pun intended) split this article in 2 parts.

The usage assumptions are:

1.       In the presence of a large number of items, the users will not look at each and every one of them at the same time.

2.       Scenarios involving a large number of items are predominantly read-only. If there’s any editing to be done, it will not take place in the ItemsControl holding the large data set.

If usage assumption 1 is valid, we only need to load what the user needs to see. This assumption is already exploited by VirtualizingStackPanel’sIsVirtualizing and VirtualizationMode modes, but it’s valid for the data side of the equation as well. Therefore, we can concentrate on techniques that load small amounts of data efficiently.

If usage assumption 2 is valid, we can ignore scenarios where users start editing large data sets in-place. In-place editing with all the bells and whistles (cancellable, transaction safe) has its own set of problems and solutions that is outside the scope of this article.

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值