[爬虫] URL提取

本文介绍了实现一个可扩展的HTML元素提取器,用于爬虫中的URL提取。提取器采用HOOK模型,允许根据需求定制不同的处理接口。通过HOOK的布尔返回值优化了性能,减少了不必要的元素和属性提取。此外,还包含一个HTML过滤器,用于预处理页面数据,去除脚本和注释。最后,展示了部分关键代码,包括提取器和过滤器的实现细节。
摘要由CSDN通过智能技术生成

参考 论文: 一种可扩展的高效链接提取模型的实现与验证


作为一个爬虫,最基本的便是能够从各个页面中提取URL,这里介绍我实现的提取器。基于可扩展性,我首先实现了一个不针对任何元素的HTML元素提取,即可以提取所有的元素,并通过HOOK的模型,再根据具体需要实现不同的HOOK来获得针对性的信息。当然爬虫的HOOK便是获取URL。


HOOK的接口大致如下:

// [消息通知接口]
void begin_parser()
void begin_element()
void end_parser()
void end_element()

// [具体处理接口]
void get_element_name(...)
void get_attr_name(...)
void get_attr_value(...)


基础提取器的过程大致如下:

获得元素名  hook.get_element_name(...)
获得属性名  hook.get_attr_name(...)
获得属性值  hook.get_attr_value(...)
获得属性名  hook.get_attr_name(...)
获得属性值  hook.get_attr_value(...)
……
如此循环直到分析完页面。

 由于考虑了可扩展性,或多火或少的会对性能有些影响,比如我们要实现一个完全针对性的URL分析,则可以减少多次的元素,属性等的提取,此过程还有多次无意义的字符判断。因此我改变了 hook 的接口,把 get_element_name() 的返回值设置为 bool 值,这样提取器便可以通过hook的接口得到不同的hook程序对不同的元素信息的关心情况,做出适当的处理,在我的实现中,该函数返回true,表示关心该元素的情况,false反之,如果是不关心的话,提取器直接跳到下一个元素进行分析,这样无疑提高了分析器的性能,使得它同针对性的提取器性能差距缩小。还有上面的begin_parser() begin_element()等通知函数是为了让不同的hook能知道当前提取器的工作情况,以方便处理获得的数据信息。

 不过在页面分析前,有必要对页面数据进行一次预处理,比如爬虫时对脚本,注释的过滤,因此我在提取器中加入一个HTML过滤器,可根据不同需要来设置不同的过滤器,在本爬虫中,我派生一个过滤器 html_filter 用于把脚本和注释进行过滤。

我的爬虫中的URL提取器大致就是这样,下面是部分代码 :

加入这两个宏纯粹是为了代码紧凑些。一个用于判断是否分析到数据流的结尾,另一个加入多少有点SB,如果flag为真,返回ret_code。HOHO

#define return_if_end(rs)   do{ if(rs == rs_end_of_file) return rs_end_of_file;}while(0)
#define return_if(flag,ret_code)  do{ if(flag) return ret_code;}while(0)

const string cauc_html_parser::m_brank = "  ";

void    cauc_html_parser::set_stream(istream& is)
{
 this->istream_it = istream::_Iter(is);
}
bool    cauc_html_parser::handle_by_hook(Command cmd)

Python批量爬虫URL通常涉及使用网络求库如`requests`或`urllib`,配合解析库`BeautifulSoup`或`pandas`的数据处理功能。以下是一个简单的步骤概述: 1. **创建URL列表**: 创建一个包含你想要抓取网页链接的列表。例如,你可以从文本文件、CSV文件或者其他数据源获取。 ```python urls = ['http://example.com/page1', 'http://example.com/page2', ...] ``` 2. **使用循环发送求**: 使用for循环遍历这个URL列表,并对每个地址发送GET求。 ```python import requests for url in urls: response = requests.get(url) ``` 3. **解析响应内容**: 对于每个返回的响应,解析HTML或JSON内容,提取你需要的信息。如果使用`BeautifulSoup`,可以这样做: ```python from bs4 import BeautifulSoup soup = BeautifulSoup(response.text, 'html.parser') data = soup.find_all('tag_name') # 替换为实际标签名 ``` 4. **保存或处理数据**: 将提取数据存储到CSV、数据库或者JSON文件中,或者直接操作内存中的数据结构。 ```python import csv with open('output.csv', mode='a', newline='') as file: writer = csv.writer(file) writer.writerow([data_item for data_item in data]) ``` 5. **错误处理**: 要记得处理可能出现的网络错误、超时或者其他异常情况。 注意:在实际使用时,要尊重网站的robots.txt规则,并确保你的爬虫活动不会对目标服务器造成过大的负担。同时,遵守相关的法律法规,避免违法抓取。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值