1. 整数在内存中的存储
在前面,我们已经了解到了,整数在内存中是以补码的形式来存储的
详情请见:C语言之详解位操作符和移位操作符
整型数据表示的范围:limits.h中定义
2. 大小端字节序
什么是大小端字节序呢?当超过一个字节大小的数据存入内存时,这时就存在存储顺序的问题,按照存储顺序,我们可以分为大端存储和小端存储
- 大端存储:将数据的低位字节内容放在内存的高地址处,将数据的高位字节内容放在内存的低地址处
- 小端存储:将数据的低位字节内容放在内存的低地址处,将数据的高位字节内容放在内存的高地址处
看到这些模糊的概念,脑瓜子是不是有点嗡嗡嗡的,没关系,下面我们用实例来解释这些概念!
我们先在VS2022上写下以下代码:
int main()
{
int n = 0x11223344;
return 0;
}
接下来,按F11进行调试,然后按以下步骤打开内存查看
我们可以发现,n = 0x11223344,在内存中的存储顺序是倒过来的!这其实就是小端存储,下面我们来分析一下!
例如:一个数123,其中3是个位,2是十位,1是百位,从右向左为低位到高位。
类似的,在十六进制中也是如此!
VS2022是小端存储存储模式,按照小端存储模式的特点,低位存储在低地址处,高位存储在高地址处,图示如下:
这也就是为什么调试时内存窗口显示的是44 33 22 11
3. 字节序判断
当我们使用一个陌生的机器时,如果我们需要知道这台机器的存储模式时,我们该怎么去判断呢?
下面同样以VS2022环境为例:
#include <stdio.h>
int check_sys(int n)
{
return *(char*)&n;
}
int main()
{
int n = 0x11223344;
int ret = check_sys(n);
if (ret == 0x44)
printf("小端\n");
else
printf("大端\n");
return 0;
}
运行结果:
我们可以通过check_sys访问n的首字节的地址对应的数字
4. 浮点数在内存中的存储
常见的浮点数:3.1415,1E10等,浮点数家族包括:float,double,long double类型
浮点数表示的范围:float.h中定义
4.1 例题
在进入正文前,我们先看一段代码
#include <stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
那么,你觉得这段代码的运行结果是多少呢?
运行结果:
实际结果是不是与你预测的有很大的差距?下面我们就带着疑问进入正式内容!
4.2 浮点数的存储
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:
V = (-1)S * M * 2E
- (-1)S表示符号位,当S = 0时,V是正数;当S = -1时,V是负数
- M表示有效数字,M是大于等于1,小于2的
- 2E表示指数位
举例来说:
十进制的5.0,写成二进制是101.0,相当于1.01 * 2 ^2
那么,按照上面V的格式,可得S=0,M=1.01,E=2
十进制的-5.0,写成二进制是-101.0,相当于-1.01 * 2^2。那么,S = 1,M = 1.01,E = 2。
IEEE 754 规定 :
对于32位的浮点数,最高的一位存储符号位S,接下来的8位存储指数E,剩下的23位存储有效数字M;对于64位的浮点数,最高的一位存储符号位S,接下来的11位存储指数E,剩下的52位存储有效数字M
图示如下:
注: 当M不足23位(或52位)时,后面补0
4.3 浮点数存的过程
IEEE 754对有效数字M和指数E,还有⼀些特别规定。
前⾯说过,1≤M<2 ,也就是说,M可以写成1.xxxxxx 的形式,其中xxxxxx 表⽰⼩数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
而对于E,E是一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E**,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
4.4 浮点数取的过程
指数E从内存中取出的过程还可以再分为三种情况:
E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
⽐如:0.5的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位00000000000000000000000,则其⼆进制表⽰形式为:
0 01111110 00000000000000000000000
E全为0
这时,E为0,那么实际的指数位需-127,是一个非常小的数,因此浮点数是一个非常接近于0的数
E全为1
这时浮点数的实际指数非常大,因此浮点数趋于无穷,究竟是正无穷还是负无穷,取决于浮点数的符号位S
4.5 例题解析
先看第一环节:
整型n = 9.0 在内存存储的二进制序列为:
0000 0000 0000 0000 0000 0000 0000 1001
按照整型打印,得到的结果就是9,这没什么问题。接下来看打印浮点数:
将其强制转换为浮点型指针
注意,这时的E是全0,实际的浮点数指数是个非常小的数,因此浮点数* Pfloat是一个非常接近于0的数
再看第二环节:
浮点数9.0 的二进制序列为1001,即1.001 * 2^3,那么它在内存存储的二进制序列中S = 0, E = 3 + 127 = 130,M = 001, 即0 10000010 00100000000000000000000
打印浮点数时,按照浮点数取出的规则取出并打印即可,得到的结果就是9.000000
而按整型数打印时,就是将浮点数在内存存储的二进制序列视为整型数的二进制序列,然后直接转换为十进制数并打印出来
结果就是10991567616
end