MATLAB案例 | 基于Copula的可靠度分析

本文详细介绍了Copula函数的绘制及在可靠度分析中的应用

各种类型Copula函数绘图

在这里插入图片描述

完整代码

clear
clc

y_gaussian = copularnd('gaussian', 0.9, 1000);
y_t = copularnd('t', 0.91, 17.53,1000);
y_Gumbel = copularnd('Gumbel', 3.22,1000);
y_Clayton = copularnd('Clayton', 3.06,1000);
y_Frank = copularnd('Frank', 12.04,1000);

subplot(2,3,1.4)
plot(y_gaussian(:,1), y_gaussian(:,2),'.')
xlabel('u')
ylabel('v')
title('Gaussian(\theta = 0.90)')
set(gca,'FontName','Times New Roman','FontSize',14);
subplot(2,3,2.6)
plot(y_t(:,1), y_t(:,2),'.')
xlabel('u')
ylabel('v')
title('t(\theta = 0.90,  \nu =17.53)')
set(gca,'FontName','Times New Roman','FontSize',14);
subplot(2,3,4)
plot(y_Gumbel(:,1), y_Gumbel(:,2),'.')
xlabel('u')
ylabel('v')
title('Gumbel(\theta = 3.22)')
set(gca,'FontName','Times New Roman','FontSize',14);
subplot(2,3,5)
plot(y_Clayton(:,1), y_Clayton(:,2),'.')
xlabel('u')
ylabel('v')
title('Clayton(\theta = 3.06)')
set(gca,'FontName','Times New Roman','FontSize',14);
subplot(2,3,6)
plot(y_Frank(:,1), y_Frank(:,2),'.')
xlabel('u')
ylabel('v')
title('Frank(\theta = 12.04)')
set(gca,'FontName','Times New Roman','FontSize',14);

例题1

设结构的极限状态方程为 Z = X 1 − X 2 − X 3 = 0 Z = X_1 - X_2 -X_3 = 0 Z=X1X2X3=0。其中, X 1 , X 2 , X 3 X_1, X_2, X_3 X1,X2,X3 均服 从正态分布,其均值和标准差分别为 μ X 1 = 21.6788 \mu_{X_1} = 21.6788 μX1=21.6788 , σ X 1 = 2.6014 \sigma_{X_1} = 2.6014 σX1=2.6014 μ X 2 = 10.4 \mu_{X_2} = 10.4 μX2=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值