ikun307
码龄3年
求更新 关注
提问 私信
  • 博客:3,782
    3,782
    总访问量
  • 5
    原创
  • 47
    粉丝
  • 54
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:黑龙江省
加入CSDN时间: 2022-09-19
博客简介:

ikun568435976的博客

查看详细资料
个人成就
  • 获得85次点赞
  • 内容获得3次评论
  • 获得48次收藏
  • 博客总排名165,022名
  • 原力等级
    原力等级
    1
    原力分
    36
    本月获得
    0
创作历程
  • 4篇
    2024年
成就勋章

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 8

TA参与的活动 0

创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

53人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 问答
  • 帖子
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 问答

  • 帖子

  • 社区

  • 视频

  • 课程

  • 关注/订阅/互动

  • 收藏

搜索 取消

离散数学(哈工大)

离散数学(哈工大)学习资料
原创
发布博客 2024.11.23 ·
316 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

基于大模型的需求追溯

使用大模型进行需求追溯,能够捕获文本的深层次语义信息,使得需求与代码之间的追溯更加精准和高效。
原创
发布博客 2024.03.31 ·
519 阅读 ·
4 点赞 ·
1 评论 ·
5 收藏

顶层需求生成底层需求

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档。
原创
发布博客 2024.03.31 ·
833 阅读 ·
19 点赞 ·
1 评论 ·
14 收藏

应用于需求生成的大模型调研

大模型是由亿级别参数构成的深度神经网络,具有处理高维度数据和学习复杂模式的能力。这些模型通过深度学习技术,如卷积神经网络(CNN)、循环神经网络(RNN)、以及近年来兴起的Transformers,能够在海量数据集上进行自我迭代学习,从而达到前所未有的准确度和效率。特别是在自然语言处理(NLP)、图像识别、语音识别等领域,大模型已经成为了实现人工智能突破性进展的关键。伴随着算法的创新、计算力的大幅提升及数据可获取性的增加,大模型技术正在开辟新的应用领域,推动人工智能技术朝着更加智能化的方向发展。
原创
发布博客 2024.03.31 ·
1682 阅读 ·
32 点赞 ·
3 评论 ·
18 收藏