4-1-2 二叉树及其遍历 树的同构 (25 分)
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1 图2
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
根据题意,代码主要需要实现:建树、判断同构
在建树时题目未指定根节点,所以我们需要自行寻找根节点
判断同构主要通过递归实现,对问题进行简化。
思考:如何寻找边界条件?(难点)
想法:1.两树都空:同构
2.两树有一空:非同构
3.两树非空:3.1.根节点数据不同:非同构
3.2.左子树为空:递归右子树
3.3.左子树数据相同:递归左右子树
3.4.左子树数据不相同:交换左右子树递归
(递归函数:相信该递归函数可以实现某种功能 — 套娃)
#include<iostream>
#include<cstring>
using namespace std;
#define MAXN 100
#define Null -1
#define Tree int
Tree check[MAXN];
struct node
{
char ch;
Tree left; //左孩子
Tree right; //右孩子
}T1[MAXN], T2[MAXN];
Tree BuildTree(struct node T[])
{
Tree Root = Null; //根节点初始化为空
memset(check, 0, sizeof(check));
int n; cin >> n;
char l, r;
if (n)
{
for (int i = 0; i < n; i++)
{
cin >> T[i].ch >> l >> r;
if (l != '-') //左节点处理
{
T[i].left = l - '0';
check[T[i].left] = 1;
}
else T[i].left = Null;
if (r != '-') //右节点处理
{
T[i].right = r - '0';
check[T[i].right] = 1;
}
else T[i].right = Null;
}
//寻找根节点
for (Tree i = 0; i < n; i++)
if (!check[i])
Root = i;
}
return Root;
}
Tree Isomorphic(Tree t1, Tree t2)
{
//两树皆为空则同构
if (t1 == Null && t2 == Null)return 1;
//两树一空一非空则不同构
if ((t1 != Null && t2 == Null) || (t1 == Null && t2 != Null))return 0;
//两树非空:
//1.根节点数据不相同则不同构
if (T1[t1].ch != T2[t2].ch)return 0;
//2.左子树为空,则重新递归判断右子树
if (T1[t1].left == Null && T2[t2].left == Null)
return Isomorphic(T1[t1].right, T2[t2].right);
//3.左子树不为空且左子树根节点相同,则递归左右子树判断
if ((T1[t1].left != Null && T2[t2].left != Null) && (T1[T1[t1].left].ch == T2[T2[t2].left].ch))
return Isomorphic(T1[t1].left, T2[t2].left) && Isomorphic(T1[t1].right, T2[t2].right);
//4.交换左右子树判断
else
return (Isomorphic(T1[t1].left, T2[t2].right) && Isomorphic(T1[t1].right, T2[t2].left));
}
int main()
{
Tree t1, t2;
t1 = BuildTree(T1);
t2 = BuildTree(T2);
if (Isomorphic(t1, t2))cout << "Yes";
else cout << "No";
return 0;
}