题解 [AcWing97]约数之和(A^B约数和%P)

这篇博客介绍了如何利用约数和公式与等比数列求和公式解决[A^B]的约数之和模P的问题。通过分解A的质因数,结合快速幂与模运算,分析了当质数p不整除pi-1时的处理方法,并给出了具体的代码逻辑来计算结果。
摘要由CSDN通过智能技术生成

link

Step 1.

S = A B S=A^B S=AB 的约数和。

约数和公式:
a = ∑ i = 1 n p i k i a=\sum\limits_{i=1}^n p_i^{k_i} a=i=1npiki p i ∈ P , k i ∈ Z + p_i\in\Bbb{P},k_i\in\Bbb{Z^+} piP,kiZ+),即对 a a a 分解素因数,
a a a 的约数和 = ∏ i = 1 n ∑ j = 0 k i p i j = ( 1 + p 1 + p 1 2 + . . . + p 1 k 1 ) ( 1 + p 2 + p 2 2 + . . . + p 2 k 2 ) . . . ( 1 + p i + p i 2 + . . . + p i k i ) =\prod\limits_{i=1}^n\sum\limits_{j=0}^{k_i}p_i^j=(1+p_1+p_1^2+...+p_1^{k_1})(1+p_2+p_2^2+...+p_2^{k_2})...(1+p_i+p_i^2+...+p_i^{k_i}) =i=1nj=0kipij=(1+p1+p12+...+p1k1)(1+p2+p22+...+p2k2)...(1+pi+pi2+...+piki)

A = ∑ i = 1 n p i k i A=\sum\limits_{i=1}^n p_i^{k_i} A=i=1npiki p i ∈ P , k i ∈ Z + p_i\in\Bbb{P},k_i\in\Bbb{Z^+} piP,kiZ+),即对 A A A 分解素因数。

S = ∏ i = 1 n ( 1 + p i 1 + p i 2 + . . . + p i k i ⋅ B ) \begin{aligned} S=\prod\limits_{i=1}^n(1+p_i^1+p_i^2+...+p_i^{k_i\cdot B}) \end{aligned} S=i=1n(1+pi1+pi2+...+pikiB)

Step 2.

可以发现这个东西是个等比数列。

等比数列求和公式:
设等比数列 { a 1 , a 2 , . . . } , a i a i − 1 = q \{a_1,a_2,...\},\frac{a_i}{a_i-1}=q {a1,a2,...},ai1ai=q
∑ i = 1 n = a 1 × q n − 1 q − 1 \sum\limits_{i=1}^n=a_1\times\displaystyle\frac{q^n-1}{q-1} i=1n=a1×q1qn1

S = ∏ i = 1 n ( 1 + p i 1 + p i 2 + . . . + p i k i ⋅ B ) = ∏ i = 1 n p i k i ⋅ B + 1 − 1 p i − 1 ≡ ∏ i = 1 n p i k i ⋅ B + 1 − 1 p i − 1 (   m o d     p ) \begin{aligned} S&=\prod\limits_{i=1}^n(1+p_i^1+p_i^2+...+p_i^{k_i\cdot B})\\&=\prod\limits_{i=1}^n\displaystyle\frac{p_i^{k_i\cdot B+1}-1}{p_i-1} \\&\equiv\prod\limits_{i=1}^n\displaystyle\frac{p_i^{k_i\cdot B+1}-1}{p_i-1}\quad(\bmod~p) \end{aligned} S=i=1n(1+pi1+pi2+...+pikiB)=i=1npi1pikiB+11i=1npi1pikiB+11(mod p)

Step 3.

柿子推好了,接下来是计算。分子简单,快速幂一下就行。分母呢?如果 p i − 1 p_i-1 pi1 p p p 互素,可以算逆元,但如果两数不互素怎么办?

如果两数不互素,因为 p p p 是质数,所以两数的 gcd ⁡ \gcd gcd 只能是 p p p,所以 p ∣ p i − 1 p|p_i-1 ppi1,此时:
p i ≡ 1 (   m o d     p ) p_i\equiv1(\bmod~p) pi1(mod p)

这不就简单多了吗?直接带到 1 + p i 1 + p i 2 + . . . + p i k i ⋅ B 1+p_i^1+p_i^2+...+p_i^{k_i\cdot B} 1+pi1+pi2+...+pikiB 中去:
1 + p i 1 + p i 2 + . . . + p i k i ⋅ B ≡ 1 + 1 + 1 + . . . + 1 ≡ k i × B + 1 (   m o d     p ) \begin{aligned} 1+p_i^1+p_i^2+...+p_i^{k_i\cdot B}&\equiv1+1+1+...+1\\&\equiv k_i\times B+1\quad(\bmod~p) \end{aligned} 1+pi1+pi2+...+pikiB1+1+1+...+1ki×B+1(mod p)

Step 4.

代码逻辑:

  • A A A 分解质因数, A = ∑ i = 1 n p i k i A=\sum\limits_{i=1}^n p_i^{k_i} A=i=1npiki;
  • 对于每个 p i p_i pi,若 p i ≡ 1 (   m o d     p ) p_i\equiv1(\bmod~p) pi1(mod p),算出 k i × B + 1   m o d   p k_i\times B+1\bmod p ki×B+1modp;否则算出 p i k i ⋅ B + 1 − 1   m o d   p p_i^{k_i\cdot B+1}-1\bmod p pikiB+11modp p i − 1 p_i-1 pi1 在膜 p p p 意义下的乘法逆元,带入柿子算算就行。

记得 long long

//acwing97
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;

const int N = 1000, mod = 9901;
ll p[N], k[N], cnt, ans = 1;

ll qpow(ll a, ll b){
	ll ans = 1;
	while(b){
		if(b&1) ans = ans * a % mod;
		a = a * a % mod;
		b >>= 1;
	}
	return ans;
}
ll inv(ll a){
	return qpow(a, mod-2);
}

int main(){
	ll a, b;
	scanf("%lld%lld", &a, &b);
	
	ll tmp = a;
	for(ll i = 2; i <= a; ++ i)
		if(tmp % i == 0){
			p[++cnt] = i;
			while(tmp % i == 0) tmp /= i, ++ k[cnt];
		}
	if(tmp > 1) p[++cnt] = tmp, k[cnt] = 1;
// 	for(int i = 1; i <= cnt; ++ i) printf("%d %d\n", p[i], k[i]);

	for(int i = 1; i <= cnt; ++ i)
		if(p[i] % mod == 1) ans = ans * (k[i]*b + 1) % mod;
		else ans = ans * (qpow(p[i], k[i]*b+1)+mod-1) % mod * inv(p[i]-1) % mod;
    
    if(a == 0) ans = 0;
	printf("%lld\n", ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值