入门计算机的粗略学习-Day15

本文探讨了数据生产力在企业数字化中的重要性,强调了数据中台与数据产品在实现'人人用数据、天天用数据'目标中的作用。指出数据中台虽能整合数据,但需配合数据产品形成企业数据应用闭环,以解决个性化需求和业务系统互通问题。
摘要由CSDN通过智能技术生成

一、全链路数据生产力

1979年,老邓画了一个圈,造就的一个信奉生产力的时代。虽然不排除某些企业逼格高,无视生产力,绝大部分企业都是想要生产力的。

企业的生产力,有一部分来自于数据生产力;数字时代企业的生产力,大部分来自于数据生产力。

数据生产力怎么定义?数据生产力,就是指企业因为发挥了数据的价值,所提升了的那部分生产力。这个定义的方式和数字经济的定义方式一样。数字经济就是指全社会因为数字化所创造的那部分GDP,据统计我们是30%+,老美超过50%,虽然这个口径貌似争议比较大。

所以企业需要的,是一种全链路的去帮助企业提升数据生产力的技术、产品或服务,也就是全方位的利用和发挥数据价值的技术、产品或服务。要做到这一点,就要尽量的让组织达到“人人用数据、天天用数据”的目标。

二、数据中台的不足

数据中台能不能达到上述目的?我们认为达不到。我所说的数据中台,指的是以网易易数和阿里Dataphin、DataWorks为代表的数据中台建设方法,不包括今年阿里新发布的加上Quick BI、Quick A+和Quick Audience的数据中台,后者我在前面的文章里已经写过,我认为并不是数据中台,因为后面这些它就是产品,就是前台啊。

以网易易数为代表的数据中台,主要解决的是组织内部数据的整合梳理后提供服务的问题,主要是数据质量和效率问题。这里就不重点说标准、规范这些,这些也重要,但主要也是为了质量和效率服务的。要是企业搞了标准、规范,结果质量和效率反而下降了,那就把搞标准、规范的人拉出去砍了。

数据中台很重要,但是它不能直接用。因为它是中台啊,中台就是不是给人直接用的。数据中台就像房子的硬装,质量是得过硬,但只是硬装的房子住不了。

我们人能用的是什么,只能是产品。微信大家都用,云音乐也很多人爱用,因为他们都是好的产品。

做好了数据中台,但做不好数据产品,那就是废柴,劳民伤财。这里我定义的数据产品是指基于数据中台的产品。

我们知道数据中台好做,好实施,因为它都是把各个系统的数据拉出来整理。我们好歹搞了也二十年的信息化吧,系统和数据源还是有的。数据中台的建设方法和工具又很成熟,所以建数据中台不难,当然部门政治问题除外。

但也是因为同样的道理,数据中台成为一个旁路系统,如下图所示,和原来的信息化系统独立的,就用不起来。

三、数据产品及数据产品的开发工具体系

要让数据中台发挥价值,就要基于数据中台开发大量的数据产品,真正做到组织里“人人用数据、天天用数据”,这样数据生产力才能全面提升。

要建设好数据产品,也要一个方法论。因为好的产品要解决问题而不是只是提供给信息,同时各个业务单元、各行各业、每家企业所需要的数据产品都很不相同,因此这个方法论的核心有两点:

1、应该提供一系列用于构建数据产品的工具集,类似开发数据中台的一系列工具。

2、应该发挥数据产品的决策优势,并可以连接原有信息化系统,让数据产品“既能看,也会动”。

这个工具体系应大致包括一下内容,才能很好的支持高效的开发数据产品:

1、产品开发中心:零代码产品开发平台,如网易易数的数据门户;

2、可视化中心:提供数据可视化分析能力,如网易易数的有数报表、复杂报表、有数移动端等;

3、算法开发中心:提供算法开发的能力,含网易易数的机器学习平台;

4、决策中心:提供决策建模及管理能力,如模型管理、执行调度管理、行动管理等;

5、连接中心:提供与业务系统的连接能力,如协同平台连接(如企业微信、钉钉)、OA连接、ERP连接、CRM连接等。对于不提供接口或者非标系统,需要通过RPA连接;

6、取数中心:提供灵活的自助式取数能力,如SQL式取数、维度模型式取数和自然语言搜索等形式;

7、分享协作中心:提供基于数据的分享和协作能力,如评论系统、关注订阅系统等;

8、数据文化中心:提供促进数据文化的组织管理能力,如数据文化案例管理、数据文化赛事系统、数据文化组织绩效管理等。

其中产品开发、可视化、算法、决策和连接这五个中心大致可以形成一个“既能看、也会动”的数据产品开发链路,有些类似于数据中台里“需求-设计-开发-测试-上线”这样的链路。其中也可以看到,现在常见的BI产品做的是数据可视化,属于数据产品开发的一个环节,也可以说是一种特定类型的数据产品。

全链路数据生产力平台,和数据中台的核心区别就在于数据产品以及通过数据产品形成的与企业业务系统的互通,进而形成企业数据应用闭环,如图所示:

业务系统典型的是流程性的信息化系统,行业术语称为System of Record(SoR);数据产品和数据中台是分析洞察系统,行业术语称为System of Insight 或System of Intelligence(SoI)。这是两类最典型的企业数字化系统。上图很好的说明了业务系统、数据中台和数据产品三者之间的关系。

这里省略了一点,就是开发数据中台的生产力,当然也应该提升。现在的数据中台开发工具已经是比较完善的,但开发效率还有提升空间。我们正在开发AutoETL等技术,进一步提升数据中台的建设效率。只不是这点相对没那么重要,就不具体展开了。

四、小结

数字时代企业的生产力,大部分来自于数据生产力,也就是企业因为发挥了数据的价值,所提升了的那部分生产力。这部分生产力,就是企业的相对优势

企业需要的是全链路的去帮助企业提升数据生产力的技术、产品或服务,核心是数据中台+数据产品,且通过数据产品形成与企业业务系统的互通,进而形成企业数据应用闭环

因各个业务单元、各行各业、每家企业所需要的数据产品都很不相同,因此我们要做的应该是一套高效定制数据产品的工具体系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值