机器学习
陈塬升
成功不必在我,而功力必不唐捐。
展开
-
机器学习链接
1.机器学习算法岗常见笔试面试题整理:https://blog.csdn.net/xxn_723911/article/details/802644702.机器学习SVM算法常见面试题(一):https://blog.csdn.net/mengjizhiyou/article/details/1055099473.机器学习与算法常见面试题总结(持续更新):https://blog.csdn.net/a18612039484/article/details/100590354...原创 2020-06-04 17:50:04 · 243 阅读 · 0 评论 -
机器学习-决策树
上:https://blog.csdn.net/HerosOfEarth/article/details/52347820下:https://blog.csdn.net/HerosOfEarth/article/details/52425952原创 2020-06-04 09:45:17 · 174 阅读 · 0 评论 -
机器学习-AdaBoost算法
简介Adaboost算法是一种提升方法,将多个弱分类器,组合成强分类器。AdaBoost,是英文”Adaptive Boosting“(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。它的自适应在于:前一个弱分类器分错的样本的权值(样本对应的权值)会得到加强,权值更新后的样本再次被用来训练下一个新的弱分类器。在每轮训练中,用总体(样本总体)训练新的弱分类器,产生新的样本权值、该弱分类器的话语权,一直迭代直到达到预定的错误率或达到指定的最大迭代次数。总体—原创 2020-06-04 09:42:24 · 714 阅读 · 0 评论 -
机器学习-朴素贝叶斯算法
简介NaïveBayes算法,又叫朴素贝叶斯算法,朴素:特征条件独立;贝叶斯:基于贝叶斯定理。属于监督学习的生成模型,实现简单,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑。在大量样本下会有较好的表现,不适用于输入向量的特征条件有关联的场景。基本思想(1)病人分类的例子某个医院早上收了六个门诊病人,如下表:症状 职业 疾病——————————————————打喷嚏 护士 感冒打喷嚏 农夫 过敏头痛 建筑工人 脑震荡头痛 建筑工人 感冒打喷嚏 教师 感冒头原创 2020-06-04 09:34:24 · 592 阅读 · 0 评论 -
机器学习-支持向量机(SVM)详解
原文链接:https://blog.csdn.net/b285795298/article/details/81977271?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineL...原创 2020-06-04 09:28:58 · 236 阅读 · 0 评论 -
机器学习-K-Means算法
简介又叫K-均值算法,是非监督学习中的聚类算法。基本思想k-means算法比较简单。在k-means算法中,用cluster来表示簇;容易证明k-means算法收敛等同于所有质心不再发生变化。基本的k-means算法流程如下:选取k个初始质心(作为初始cluster,每个初始cluster只包含一个点); repeat: 对每个样本点,计算得到距其最近的质心,将其类别标为该质心所对应的cluster; 重新计算k个cluster对应的质心(质心是clust原创 2020-06-04 09:15:01 · 955 阅读 · 0 评论 -
机器学习-KNN(最近邻)详解
K-近邻算法原理K最近邻(kNN,k-NearestNeighbor)分类算法,见名思意:找到最近的k个邻居(样本),在前k个样本中选择频率最高的类别作为预测类别,什么?怎么那么拗口,没图说个JB,下面举个例子,图解一下大家就会显而易见了,如下图:我们的目的是要预测某个学生在数学课上的成绩。。。先来说明几个基本概念:图中每个点代表一个样本(在这里是指一个学生),横纵坐标代表了特征(到课率,作业质量),不同的形状代表了类别(即:红色代表A(优秀),绿色代表D(不及格))。我们现在看(10,20)这个.原创 2020-06-04 09:06:39 · 1851 阅读 · 0 评论 -
机器学习-多元线性回归(multiple linear regression)
先甩几个典型的线性回归的模型,帮助大家捡起那些年被忘记的数学。● 单变量线性回归: h(x)=theta0 + theta1* x 1● 多变量线性回归: h(x)=theta0 + theta1* x 1 + theta2* x 2 + theta3* x 3● 多项式回归: h(x)=theta0 + theta1* x 1 + theta2* (x2^2) + theta3* (x3^3)多项式回归始终还是线性回归,你可以令x2=x22,x3=x33,简单的数据处理一下就好了,这原创 2020-06-03 15:06:13 · 4781 阅读 · 1 评论 -
机器学习-逻辑回归(Logistic Regression)
一. 逻辑回归在前面讲述的回归模型中,处理的因变量都是数值型区间变量,建立的模型描述是因变量的期望与自变量之间的线性关系。比如常见的线性回归模型:而在采用回归模型分析实际问题中,所研究的变量往往不全是区间变量而是顺序变量或属性变量,比如二项分布问题。通过分析年龄、性别、体质指数、平均血压、疾病指数等指标,判断一个人是否换糖尿病,Y=0表示未患病,Y=1表示患病,这里的响应变量是一个两点(0-1)分布变量,它就不能用h函数连续的值来预测因变量Y(只能取0或1)。总之,线性回归模型通常是处理因变量是连续原创 2020-06-03 14:53:32 · 774 阅读 · 0 评论 -
自制Spark安装详细过程(含Scala)
https://blog.csdn.net/Fortuna_i/article/details/82751818原创 2020-03-17 13:56:23 · 366 阅读 · 0 评论 -
机器学习-SVM支持向量机解析
支持向量机(SVM)1 摘要支持向量机是一种二类分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,所以模型的学习策略就是间隔最大化,因此形式可化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题,支持向量机的学习算法是求解凸二次规划的最优化算法。对于入门支持向量机,可以先不用看懂上面的摘要,通过逐步理解下面的公式...原创 2020-04-26 14:00:13 · 465 阅读 · 0 评论
分享