深度学习
陈塬升
成功不必在我,而功力必不唐捐。
展开
-
one-hot编码
one-hot机器学习算法无法直接用于数据分类。数据分类必须转换为数字才能进一步进行。在本教程中,你将发现如何将输入或输出的序列数据转换为一种热编码,以便于你在Python中深度学习的序列分类问题中使用。看完本教程后,你将会了解:· 1.什么是整数编码和One-Hot编码,以及为什么它们在机器学习中是必需的。· 2.如何在Python中手工计算一个整数编码和One-Hot编码。· 3.如何使用scikit-learn和Keras库来自动对Python中的序列数据进行编码。本教程分为原创 2020-06-12 15:44:47 · 621 阅读 · 0 评论 -
深度学习链接
1.目标检测总结:https://blog.csdn.net/molihong28/article/details/90137182原创 2020-06-05 16:30:26 · 340 阅读 · 0 评论 -
深度学习-CNN
原文链接:https://blog.csdn.net/v_JULY_v/article/details/51812459原创 2020-06-04 10:10:15 · 190 阅读 · 0 评论 -
深度学习-RNN LSTM BI-LSTM
RNN 循环神经网络RNN主要处理有时序关系的变长序列问题。每个神经元在每一时刻都一个特殊的hidden状态h(t),由当前节点的输入I(t)和上一时刻t-1隐藏状态h(t-1)加权求和后经过一个非线性激活函数得到,具体表示成公式如下:每个神经元t时刻隐状态参数Whh决定了当前神经元以多少比例接受之前所有时刻[0,t-1]的输入信息阻碍RNN发展的两个严重问题是:梯度爆炸 和 梯度消失、RNN的对隐状态h(0)进行反向传播:利用RNN时序上的依赖关系对上式进行展开,得到(注意,下式成立的前原创 2020-06-04 10:01:22 · 743 阅读 · 0 评论 -
深度学习-前向传播和反向传播
在求出前向传播和反向传播前要先确定参数和输入输出符号的表达形式最普通的DNN就可以看做是一个多层感知机MLP,感知机的输出其实就是对输入的加权求和:,再经过一个非线性激活函数首先来定义权值矩阵W,按照下图规则,表示的是第3层第2个神经元和第2层第4个神经元之间连线(连线就代表权重,可以看成是的省略写法)。那么为什么不写成呢,形式上是允许的,但是如果这样写的话,第3层神经元的输入就要通过来计算,而前者只需要计算,省略了矩阵转置的额外工作量。偏置项b的定义也是类似,表示第2层第3个神经元的偏置。再定原创 2020-06-04 09:52:48 · 857 阅读 · 0 评论 -
深度学习-Ultra-Light-Fast-Generic-Face-Detector-1MB网络结构详解
近日,用户Linzaer在Github上开源了一款适用于边缘计算设备、移动端设备以及 PC 的超轻量级通用人脸检测模型,该模型文件大小仅1MB,一经开源就霸榜Github Trending榜单。短短几天时间,已经在Github上标星2.1K,398个Fork(Github地址:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB)据Linzaer介绍,该模型设计是针对边缘计算设备或低算力设备(如用ARM推理)设计的原创 2020-06-03 15:40:13 · 1514 阅读 · 1 评论 -
深度学习-MTCNN网络结构详解
MTCNN工作原理MTCNN是什么MTCNN,Multi-task convolutional neural network(多任务卷积神经网络),将人脸区域检测与人脸关键点检测放在了一起,它的主题框架类似于cascade。总体可分为P-Net、R-Net、和O-Net三层网络结构。它是2016年中国科学院深圳研究院提出的用于人脸检测任务的多任务神经网络模型,该模型主要采用了三个级联的网络,采用候选框加分类器的思想,进行快速高...原创 2020-06-03 14:45:03 · 4558 阅读 · 0 评论 -
深度学习-Inception和Xception网络结构详解
Inception 是神经网络结构的一大神作,其提出的「多尺寸卷积」和「多个小卷积核替代大卷积核」等概念是现如今许多优秀网络架构的基石。也正是如此,基于此的 Xception 横空出世,作者称其为 Extreme Inception,提出的 Depthwise Separable Conv 也是让人眼前一亮。本文不详细讲解论文内容,只探讨提出的这几个基础概念和结构,并按照时间顺序来探讨。首先探讨的是 Inception 的 多尺寸卷积核 和 卷积核替换,然后到 Bottleneck,最后到 Xceptio原创 2020-06-03 14:23:25 · 2110 阅读 · 1 评论 -
深度学习-YOLOv4网络结构详解
简介论文提出YOLOv4,从图1的结果来看,相对于YOLOv3在准确率上提升了近10个点,然而速度并几乎没有下降.论文主要贡献如下:1.提出速度更快、精度更好的检测模型,仅需要单张1080Ti或2080Ti即可完成训练。3.验证了目前SOTA的Bag-ofFreebies(不增加推理成本的trick)和Bag-of-Specials(增加推理成本的trick)的有效性。4.修改了SOT...原创 2020-04-26 14:43:36 · 5359 阅读 · 0 评论 -
pip升级后Import Error:cannot import name main解决方案
pip升级后Import Error:cannot import name main解决方案在Ubuntu上安装软件,不小心升级了pip,导致使用时报错如下:后来发现是因为将pip更新为19.3.1后库里面的函数有所变动造成这个问题。 解决方法如下:$ sudo gedit /usr/bin/pipfrom pip import main改成from pip._internal...原创 2020-01-02 17:14:33 · 367 阅读 · 0 评论 -
卷积神经网络的变革方向
从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量。我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向。卷积只能在同一组进行吗?-- Group convolutionGroup convolution 分组卷积,最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexN...原创 2020-04-26 10:35:43 · 673 阅读 · 0 评论
分享