# 场波知识整理——3.1几种介质中的传播规律

3 篇文章 0 订阅

∇ × E ‾ = − ∂ B ‾ ∂ t \nabla\times\overline{E}=-\frac{\partial\overline{B}}{\partial{t}}

∇ × H ‾ = ∂ D ‾ ∂ t + J ‾ \nabla\times\overline{H}=\frac{\partial\overline{D}}{\partial{t}}+\overline{J}

∇ ⋅ D ‾ = ρ \nabla\cdot\overline{D}=\rho

∇ ⋅ B ‾ = 0 \nabla\cdot\overline{B}=0

∇ × E ‾ ( r ) = i ω B ‾ ( r ) \nabla\times\overline{E}(r)=i\omega\overline{B}(r)

∇ × H ‾ ( r ) = − i ω D ‾ ( r ) + J ‾ ( r ) \nabla\times\overline{H}(r)=-i\omega\overline{D}(r)+\overline{J}(r)

∇ ⋅ D ‾ ( r ) = ρ ( r ) \nabla\cdot\overline{D}(r)=\rho(r)

∇ ⋅ B ‾ ( r ) = 0 \nabla\cdot\overline{B}(r)=0

D ‾ = ϵ E ‾ , B ‾ = μ H ‾ \overline{D}=\epsilon\overline{E},\overline{B}=\mu\overline{H}

1.无源（ J ‾ = 0 \overline{J}=0

∇ × ∇ × E ‾ = i ω μ 0 ∇ × H ‾ = ω 2 μ 0 ϵ 0 E ‾ \nabla\times\nabla\times\overline{E}=i\omega\mu_0\nabla\times\overline{H}=\omega^2\mu_0\epsilon_0\overline{E}

( ∇ 2 + ω 2 μ 0 ϵ 0 ) E ‾ = 0 (\nabla^2+\omega^2\mu_0\epsilon_0)\overline{E}=0

E ‾ = x ^ e i k z k 2 = ω 2 μ 0 ϵ 0 \overline{E}=\hat{x}e^{ikz} \quad k^2=\omega^2\mu_0\epsilon_0

2.导体

∇ × H ‾ = − i ω ϵ E ‾ + σ E ‾ = − i ω ϵ ( 1 + i σ ω ϵ ) E ‾ \nabla\times\overline{H}=-i\omega\epsilon\overline{E}+\sigma\overline{E}=-i\omega\epsilon(1+i\frac{\sigma}{\omega\epsilon})\overline{E}

∇ × H ‾ = − i ω ϵ c E ‾ \nabla\times\overline{H}=-i\omega\epsilon_c\overline{E}

k 2 = ω 2 μ 0 ϵ c k = ω μ 0 ϵ 1 + i σ ω ϵ = k R + i k I k^2=\omega^2\mu_0\epsilon_c \quad k=\omega\sqrt{\mu_0\epsilon}\sqrt{1+\frac{i\sigma}{\omega\epsilon}}=k_R+ik_I

E ‾ = R e { E ‾ ⋅ e − i ω t } \overline{E}=Re\{\overline{E}\cdot{e^{-i\omega{t}}}\}

= R e { x ^ e i ( k R + i k I ) z e − i ω t } =Re\{\hat{x}e^{i(k_R+ik_I)z}e^{-i\omega{t}}\}

= x ^ e − k I z cos ⁡ ( k R z − ω t ) =\hat{x}e^{-k_Iz}\cos(k_Rz-\omega{t})

（1）电导率低的导体（slightly conducting medium）

σ ω ϵ < < 1 且 σ ω ϵ ≠ 0 \frac{\sigma}{\omega\epsilon}<<1且\frac{\sigma}{\omega\epsilon}\neq0

k = ω μ 0 ϵ ( 1 + i σ 2 ω ϵ ) k I = σ 2 μ 0 ϵ k=\omega\sqrt{\mu_0\epsilon}(1+i\frac{\sigma}{2\omega\epsilon}) \quad k_I=\frac{\sigma}{2}\sqrt{\frac{\mu_0}{\epsilon}}

d p = 2 σ ϵ μ 0 d_p=\frac{2}{\sigma}\sqrt{\frac{\epsilon}{\mu_0}}

（2）电导率高的导体（highly conducting medium）

σ ω ϵ > > 1 \frac{\sigma}{\omega\epsilon}>>1

k = ω μ 0 ϵ ⋅ i ⋅ σ ω ϵ = ω μ 0 σ 2 ( 1 + i ) k=\omega\sqrt{\mu_0\epsilon}\cdot\sqrt{i}\cdot\sqrt{\frac{\sigma}{\omega\epsilon}}=\sqrt{\frac{\omega\mu_0\sigma}{2}}(1+i)

k R = k I = ω μ 0 σ 2 k_R=k_I=\sqrt{\frac{\omega\mu_0\sigma}{2}}

d p = 2 ω μ 0 σ d_p=\sqrt{\frac{2}{\omega\mu_0\sigma}}

3.电浆（Plasma Medium）

f ‾ = q E ‾ = m d v ‾ d t = − i ω m v ‾ \overline{f}=q\overline{E}=m\frac{d\overline{v}}{dt}=-i\omega m\overline{v}

J ‾ = N q v ‾ = i N q 2 ω m E ‾ \overline{J}=Nq\overline{v}=i\frac{Nq^2}{\omega m}\overline{E}

ω p = N q 2 m ϵ 0 \omega_p=\sqrt{\frac{Nq^2}{m\epsilon_0}}

∇ × H ‾ = − i ω ϵ 0 E ‾ + J ‾ = − i ω ϵ 0 ( 1 − ω p 2 ω 2 ) \nabla\times\overline{H}=-i\omega\epsilon_0\overline{E}+\overline{J}=-i\omega\epsilon_0(1-\frac{{\omega_p}^2}{{\omega}^2})

（1） ω ≥ ω p k = ω μ 0 ϵ 0 1 − ω p 2 ω 2 = k R \omega\geq\omega_p \quad k=\omega\sqrt{\mu_0\epsilon_0}\sqrt{1-\frac{{\omega_p}^2}{{\omega}^2}}=k_R

（2） ω ≤ ω p k = i ω μ 0 ϵ 0 ω p 2 ω 2 − 1 = i k I \omega\leq\omega_p \quad k=i\omega\sqrt{\mu_0\epsilon_0}\sqrt{\frac{{\omega_p}^2}{{\omega}^2}-1}=ik_I

E ‾ = x ^ e i k z = x ^ e − k I z \overline{E}=\hat{x}e^{ikz}=\hat{x}e^{-k_Iz}

H ‾ = y ^ 1 i ω μ 0 ( − k I ) e − k I z \overline{H}=\hat{y}\frac{1}{i\omega\mu_0}(-k_I)e^{-k_Iz}

S ‾ = E ‾ × H ‾ ∗ = z ^ i k I ω μ 0 e − k I z \overline{S}=\overline{E}\times\overline{H}^*=\hat{z}i\frac{k_I}{\omega\mu_0}e^{-k_Iz}

< S ‾ > = 1 2 R e { S ‾ } = 0 <\overline{S}>=\frac{1}{2}Re\{\overline{S}\}=0

4.洛伦兹介质（Lorentz medium）

q E ‾ = f ‾ = m ( d 2 r ‾ d t 2 + γ d r ‾ d t + ω 0 2 r ‾ ) , γ q\overline{E}=\overline{f}=m(\frac{d^2\overline{r}}{dt^2}+\gamma\frac{d\overline{r}}{dt}+\omega_0^2\overline{r}),\gamma 为碰撞频率

J ‾ = N q v ‾ = N q ( − i ω ) q E ‾ m [ ( − i ω ) 2 + ( − i ω ) γ + ω 0 2 ] \overline{J}=Nq\overline{v}=Nq(-i\omega)\frac{q\overline{E}}{m[(-i\omega)^2+(-i\omega)\gamma+\omega_0^2]}

k 2 = ω 2 μ ϵ L k^2=\omega^2\mu\epsilon_L

ϵ L = ϵ [ 1 − ( ω 2 − ω 0 2 ) ω p 2 ( ω 2 − ω 0 2 ) 2 + ( ω γ ) 2 ] + i ω γ ω p 2 ( ω 2 − ω 0 2 ) 2 + ( ω γ ) 2 \epsilon_L=\epsilon[1-\frac{(\omega^2-\omega_0^2)\omega_p^2}{{(\omega^2-\omega_0^2)}^2+(\omega\gamma)^2}]+i\frac{\omega\gamma\omega_p^2}{{(\omega^2-\omega_0^2)}^2+(\omega\gamma)^2}

• 0
点赞
• 0
评论
• 0
收藏
• 一键三连
• 扫一扫，分享海报

05-27 5729

11-21 5687
01-16 2105
01-05 10万+
03-18 536
04-05 475
07-14 1万+
01-12 1823
01-04 2万+