场波知识整理——3.1几种介质中的传播规律

场波 专栏收录该内容
3 篇文章 0 订阅

首先是时域和频域之间的Maxwell方程的转换:

时域:

∇ × E ‾ = − ∂ B ‾ ∂ t \nabla\times\overline{E}=-\frac{\partial\overline{B}}{\partial{t}} ×E=tB

∇ × H ‾ = ∂ D ‾ ∂ t + J ‾ \nabla\times\overline{H}=\frac{\partial\overline{D}}{\partial{t}}+\overline{J} ×H=tD+J

∇ ⋅ D ‾ = ρ \nabla\cdot\overline{D}=\rho D=ρ

∇ ⋅ B ‾ = 0 \nabla\cdot\overline{B}=0 B=0

频域:

时域上对t求偏导相当于频域上乘一个( − i ω -i\omega iω)

∇ × E ‾ ( r ) = i ω B ‾ ( r ) \nabla\times\overline{E}(r)=i\omega\overline{B}(r) ×E(r)=iωB(r)

∇ × H ‾ ( r ) = − i ω D ‾ ( r ) + J ‾ ( r ) \nabla\times\overline{H}(r)=-i\omega\overline{D}(r)+\overline{J}(r) ×H(r)=iωD(r)+J(r)

∇ ⋅ D ‾ ( r ) = ρ ( r ) \nabla\cdot\overline{D}(r)=\rho(r) D(r)=ρ(r)

∇ ⋅ B ‾ ( r ) = 0 \nabla\cdot\overline{B}(r)=0 B(r)=0

继续写,代入B与H、E与D之间的关系:

D ‾ = ϵ E ‾ , B ‾ = μ H ‾ \overline{D}=\epsilon\overline{E},\overline{B}=\mu\overline{H} D=ϵE,B=μH

分下面几种情况:

1.无源( J ‾ = 0 \overline{J}=0 J=0

∇ × ∇ × E ‾ = i ω μ 0 ∇ × H ‾ = ω 2 μ 0 ϵ 0 E ‾ \nabla\times\nabla\times\overline{E}=i\omega\mu_0\nabla\times\overline{H}=\omega^2\mu_0\epsilon_0\overline{E} ××E=iωμ0×H=ω2μ0ϵ0E

( ∇ 2 + ω 2 μ 0 ϵ 0 ) E ‾ = 0 (\nabla^2+\omega^2\mu_0\epsilon_0)\overline{E}=0 (2+ω2μ0ϵ0)E=0

E ‾ = x ^ e i k z k 2 = ω 2 μ 0 ϵ 0 \overline{E}=\hat{x}e^{ikz} \quad k^2=\omega^2\mu_0\epsilon_0 E=x^eikzk2=ω2μ0ϵ0

2.导体

由欧姆定律,有: J ‾ = σ E ‾ \overline{J}=\sigma\overline{E} J=σE

∇ × H ‾ = − i ω ϵ E ‾ + σ E ‾ = − i ω ϵ ( 1 + i σ ω ϵ ) E ‾ \nabla\times\overline{H}=-i\omega\epsilon\overline{E}+\sigma\overline{E}=-i\omega\epsilon(1+i\frac{\sigma}{\omega\epsilon})\overline{E} ×H=iωϵE+σE=iωϵ(1+iωϵσ)E

定义 ϵ c = ϵ ( 1 + i σ ω ϵ ) \epsilon_c=\epsilon(1+i\frac{\sigma}{\omega\epsilon}) ϵc=ϵ(1+iωϵσ),则有:

∇ × H ‾ = − i ω ϵ c E ‾ \nabla\times\overline{H}=-i\omega\epsilon_c\overline{E} ×H=iωϵcE

k 2 = ω 2 μ 0 ϵ c k = ω μ 0 ϵ 1 + i σ ω ϵ = k R + i k I k^2=\omega^2\mu_0\epsilon_c \quad k=\omega\sqrt{\mu_0\epsilon}\sqrt{1+\frac{i\sigma}{\omega\epsilon}}=k_R+ik_I k2=ω2μ0ϵck=ωμ0ϵ 1+ωϵiσ =kR+ikI

频域化时域:

E ‾ = R e { E ‾ ⋅ e − i ω t } \overline{E}=Re\{\overline{E}\cdot{e^{-i\omega{t}}}\} E=Re{Eeiωt}

= R e { x ^ e i ( k R + i k I ) z e − i ω t } =Re\{\hat{x}e^{i(k_R+ik_I)z}e^{-i\omega{t}}\} =Re{x^ei(kR+ikI)zeiωt}

= x ^ e − k I z cos ⁡ ( k R z − ω t ) =\hat{x}e^{-k_Iz}\cos(k_Rz-\omega{t}) =x^ekIzcos(kRzωt)

我们认为当电场的强度变为原来的 1 e \frac{1}{e} e1时,就已经完全衰减,定义此距离为趋肤深度 d p d_p dp(Penetration depth)

因此有 e − 1 = e k I d p d p = 1 k I e^{-1}=e^{k_Id_p} \quad d_p=\frac{1}{k_I} e1=ekIdpdp=kI1

(1)电导率低的导体(slightly conducting medium)

σ ω ϵ < < 1 且 σ ω ϵ ≠ 0 \frac{\sigma}{\omega\epsilon}<<1且\frac{\sigma}{\omega\epsilon}\neq0 ωϵσ<<1ωϵσ=0

k = ω μ 0 ϵ ( 1 + i σ 2 ω ϵ ) k I = σ 2 μ 0 ϵ k=\omega\sqrt{\mu_0\epsilon}(1+i\frac{\sigma}{2\omega\epsilon}) \quad k_I=\frac{\sigma}{2}\sqrt{\frac{\mu_0}{\epsilon}} k=ωμ0ϵ (1+i2ωϵσ)kI=2σϵμ0

d p = 2 σ ϵ μ 0 d_p=\frac{2}{\sigma}\sqrt{\frac{\epsilon}{\mu_0}} dp=σ2μ0ϵ

(2)电导率高的导体(highly conducting medium)

σ ω ϵ > > 1 \frac{\sigma}{\omega\epsilon}>>1 ωϵσ>>1

k = ω μ 0 ϵ ⋅ i ⋅ σ ω ϵ = ω μ 0 σ 2 ( 1 + i ) k=\omega\sqrt{\mu_0\epsilon}\cdot\sqrt{i}\cdot\sqrt{\frac{\sigma}{\omega\epsilon}}=\sqrt{\frac{\omega\mu_0\sigma}{2}}(1+i) k=ωμ0ϵ i ωϵσ =2ωμ0σ (1+i)

k R = k I = ω μ 0 σ 2 k_R=k_I=\sqrt{\frac{\omega\mu_0\sigma}{2}} kR=kI=2ωμ0σ

d p = 2 ω μ 0 σ d_p=\sqrt{\frac{2}{\omega\mu_0\sigma}} dp=ωμ0σ2

3.电浆(Plasma Medium)

f ‾ = q E ‾ = m d v ‾ d t = − i ω m v ‾ \overline{f}=q\overline{E}=m\frac{d\overline{v}}{dt}=-i\omega m\overline{v} f=qE=mdtdv=iωmv

J ‾ = N q v ‾ = i N q 2 ω m E ‾ \overline{J}=Nq\overline{v}=i\frac{Nq^2}{\omega m}\overline{E} J=Nqv=iωmNq2E

ω p = N q 2 m ϵ 0 \omega_p=\sqrt{\frac{Nq^2}{m\epsilon_0}} ωp=mϵ0Nq2

∇ × H ‾ = − i ω ϵ 0 E ‾ + J ‾ = − i ω ϵ 0 ( 1 − ω p 2 ω 2 ) \nabla\times\overline{H}=-i\omega\epsilon_0\overline{E}+\overline{J}=-i\omega\epsilon_0(1-\frac{{\omega_p}^2}{{\omega}^2}) ×H=iωϵ0E+J=iωϵ0(1ω2ωp2)

定义 ϵ p = ϵ 0 ( 1 − ω p 2 ω 2 ) \epsilon_p=\epsilon_0(1-\frac{{\omega_p}^2}{{\omega}^2}) ϵp=ϵ0(1ω2ωp2),则有 k 2 = ω 2 μ 0 ϵ p k^2=\omega^2\mu_0\epsilon_p k2=ω2μ0ϵp

(1) ω ≥ ω p k = ω μ 0 ϵ 0 1 − ω p 2 ω 2 = k R \omega\geq\omega_p \quad k=\omega\sqrt{\mu_0\epsilon_0}\sqrt{1-\frac{{\omega_p}^2}{{\omega}^2}}=k_R ωωpk=ωμ0ϵ0 1ω2ωp2 =kR

(2) ω ≤ ω p k = i ω μ 0 ϵ 0 ω p 2 ω 2 − 1 = i k I \omega\leq\omega_p \quad k=i\omega\sqrt{\mu_0\epsilon_0}\sqrt{\frac{{\omega_p}^2}{{\omega}^2}-1}=ik_I ωωpk=iωμ0ϵ0 ω2ωp21 =ikI

E ‾ = x ^ e i k z = x ^ e − k I z \overline{E}=\hat{x}e^{ikz}=\hat{x}e^{-k_Iz} E=x^eikz=x^ekIz

H ‾ = y ^ 1 i ω μ 0 ( − k I ) e − k I z \overline{H}=\hat{y}\frac{1}{i\omega\mu_0}(-k_I)e^{-k_Iz} H=y^iωμ01(kI)ekIz

S ‾ = E ‾ × H ‾ ∗ = z ^ i k I ω μ 0 e − k I z \overline{S}=\overline{E}\times\overline{H}^*=\hat{z}i\frac{k_I}{\omega\mu_0}e^{-k_Iz} S=E×H=z^iωμ0kIekIz

< S ‾ > = 1 2 R e { S ‾ } = 0 <\overline{S}>=\frac{1}{2}Re\{\overline{S}\}=0 <S>=21Re{S}=0

这种波我们称为倏逝波

4.洛伦兹介质(Lorentz medium)

q E ‾ = f ‾ = m ( d 2 r ‾ d t 2 + γ d r ‾ d t + ω 0 2 r ‾ ) , γ q\overline{E}=\overline{f}=m(\frac{d^2\overline{r}}{dt^2}+\gamma\frac{d\overline{r}}{dt}+\omega_0^2\overline{r}),\gamma qE=f=m(dt2d2r+γdtdr+ω02r),γ为碰撞频率

与电浆的推导进行对比,可以得出:

J ‾ = N q v ‾ = N q ( − i ω ) q E ‾ m [ ( − i ω ) 2 + ( − i ω ) γ + ω 0 2 ] \overline{J}=Nq\overline{v}=Nq(-i\omega)\frac{q\overline{E}}{m[(-i\omega)^2+(-i\omega)\gamma+\omega_0^2]} J=Nqv=Nq(iω)m[(iω)2+(iω)γ+ω02]qE

定义 ϵ L = ϵ ( 1 − ω p 2 ω 2 − ω 0 2 + i ω γ ) \epsilon_L=\epsilon(1-\frac{\omega_p^2}{\omega^2-\omega_0^2+i\omega\gamma}) ϵL=ϵ(1ω2ω02+iωγωp2)

k 2 = ω 2 μ ϵ L k^2=\omega^2\mu\epsilon_L k2=ω2μϵL

ϵ L = ϵ [ 1 − ( ω 2 − ω 0 2 ) ω p 2 ( ω 2 − ω 0 2 ) 2 + ( ω γ ) 2 ] + i ω γ ω p 2 ( ω 2 − ω 0 2 ) 2 + ( ω γ ) 2 \epsilon_L=\epsilon[1-\frac{(\omega^2-\omega_0^2)\omega_p^2}{{(\omega^2-\omega_0^2)}^2+(\omega\gamma)^2}]+i\frac{\omega\gamma\omega_p^2}{{(\omega^2-\omega_0^2)}^2+(\omega\gamma)^2} ϵL=ϵ[1(ω2ω02)2+(ωγ)2(ω2ω02)ωp2]+i(ω2ω02)2+(ωγ)2ωγωp2

其实部与虚部图像如下:

在这里插入图片描述

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值