场波知识整理——1.1数学基础、电磁波的极化方式

场波 专栏收录该内容
3 篇文章 0 订阅

首先是数学基础部分,场波主要用到的数学知识是矢量分析:
1.梯度
g r a d f = lim ⁡ Δ V → 0 ∯ Δ S f d S → Δ V = x ^ ∂ f ∂ x + y ^ ∂ f ∂ y + z ^ ∂ f ∂ z ∇ ≡ x ^ ∂ ∂ x + y ^ ∂ ∂ y + z ^ ∂ ∂ z g r a d f = ∇ f \begin{aligned} &grad f=\lim_{\Delta V\rightarrow0}\frac{\oiint_{\Delta S}{fd\overrightarrow{S}}}{\Delta V}=\hat{x}\frac{\partial{f}}{\partial{x}}+\hat{y}\frac{\partial{f}}{\partial{y}}+\hat{z}\frac{\partial{f}}{\partial{z}}\\ &\nabla \equiv \hat{x}\frac{\partial}{\partial{x}}+\hat{y}\frac{\partial}{\partial{y}}+\hat{z}\frac{\partial}{\partial{z}}\\ &grad f=\nabla f \end{aligned} gradf=ΔV0limΔV ΔSfdS =x^xf+y^yf+z^zfx^x+y^y+z^zgradf=f
对于一元函数来说,梯度表示斜率;对于多元函数来说,梯度表示函数值变化最快的方向。
另外,在柱坐标系和球坐标系中,梯度的表达式子如下所示:
柱坐标系: ∇ = ρ ^ ∂ ∂ ρ + ϕ ^ ∂ ρ ∂ ϕ + z ^ ∂ ∂ z \nabla = \hat{\rho}\frac{\partial}{\partial{\rho}}+\hat{\phi}\frac{\partial}{\rho\partial{\phi}}+\hat{z}\frac{\partial}{\partial{z}} =ρ^ρ+ϕ^ρϕ+z^z
球坐标系: ∇ = r ^ ∂ ∂ r + θ ^ ∂ r ∂ θ + ϕ ^ ∂ r sin ⁡ θ ∂ ϕ \nabla = \hat{r}\frac{\partial}{\partial{r}}+\hat{\theta}\frac{\partial}{r\partial{\theta}}+\hat{\phi}\frac{\partial}{r\sin{\theta}\partial{\phi}} =r^r+θ^rθ+ϕ^rsinθϕ
2.散度(沿矢量方向变化)
d i v A → = lim ⁡ Δ V → 0 ∯ Δ S A → d S → Δ V = x ^ ∂ A x ∂ x + y ^ ∂ A y ∂ y + z ^ ∂ A z ∂ z d i v A → ≡ ∇ ⋅ A ∭ V ∇ ⋅ A → d V = ∯ Δ S A → d S → \begin{aligned} &div\overrightarrow{A}=\lim_{\Delta{V}\rightarrow0}\frac{\oiint_{\Delta S}{\overrightarrow{A}d\overrightarrow{S}}}{\Delta V}=\hat{x}\frac{\partial{A_x}}{\partial{x}}+\hat{y}\frac{\partial{A_y}}{\partial{y}}+\hat{z}\frac{\partial{A_z}}{\partial{z}}\\ &div \overrightarrow{A} \equiv \nabla \cdot A\\ &\iiint_{V}\nabla\cdot\overrightarrow{A}dV=\oiint_{\Delta S}{\overrightarrow{A}d\overrightarrow{S}} \end{aligned} divA =ΔV0limΔV ΔSA dS =x^xAx+y^yAy+z^zAzdivA AVA dV= ΔSA dS
3.旋度(垂直于矢量方向变化)
c u r l A → = lim ⁡ Δ S → 0 ∮ A → d l → Δ S ∭ V ∇ × A → = ∯ S d S → × A → ∬ S ( ∇ × A → ) d S → = ∮ C A → d l → \begin{aligned} &curl\overrightarrow{A}=\lim_{\Delta{S}\rightarrow{0}} {\frac{\oint{\overrightarrow{A}d\overrightarrow{l}}}{\Delta{S}}} \\ &\iiint_V{\nabla\times\overrightarrow{A}}=\oiint_S{d\overrightarrow{S}\times{\overrightarrow{A}}}\\ &\iint_S({\nabla\times\overrightarrow{A}})d\overrightarrow{S}=\oint_C{\overrightarrow{A}d\overrightarrow{l}} \end{aligned} curlA =ΔS0limΔSA dl V×A = SdS ×A S(×A )dS =CA dl
一些常用的结论:
∇ × ( ∇ ϕ ) = 0 ∇ ⋅ ( ∇ × A ‾ ) = 0 ∇ ⋅ ( A ‾ × B ‾ ) = B ‾ ⋅ ( ∇ × A ‾ ) − A ‾ ⋅ ( ∇ × B ‾ ) ∇ × ( ∇ × A ‾ ) = ∇ ( ∇ ⋅ A ‾ ) − ∇ 2 A ‾ C ‾ × ( A ‾ × B ‾ ) = A ‾ ( C ‾ ⋅ B ‾ ) − ( C ‾ ⋅ A ‾ ) B ‾ \begin{aligned} &\nabla\times(\nabla\phi)=0\\ &\nabla\cdot(\nabla\times\overline{A})=0\\ &\nabla\cdot(\overline{A}\times\overline{B})=\overline{B}\cdot(\nabla\times\overline{A})-\overline{A}\cdot(\nabla\times\overline{B})\\ &\nabla\times(\nabla\times\overline{A})=\nabla(\nabla\cdot\overline{A})-\nabla^2{\overline{A}}\\ &\overline{C}\times(\overline{A}\times\overline{B})=\overline{A}(\overline{C}\cdot\overline{B})-(\overline{C}\cdot\overline{A})\overline{B} \end{aligned} ×(ϕ)=0(×A)=0(A×B)=B(×A)A(×B)×(×A)=(A)2AC×(A×B)=A(CB)(CA)B
对于一般的坐标系( h 1 u 1 , h 2 u 2 , h 3 u 3 h_1u_1,h_2u_2,h_3u_3 h1u1,h2u2,h3u3):
∇ ϕ = u 1 ^ ∂ ϕ h 1 ∂ u 1 + u 2 ^ ∂ ϕ h 2 ∂ u 2 + u 3 ^ ∂ ϕ h 3 ∂ u 3 ∇ ⋅ D ‾ = 1 h 1 h 2 h 3 ( ∂ ∂ u 1 ( h 2 h 3 D 1 ) + ∂ ∂ u 2 ( h 3 h 1 D 2 ) + ∂ ∂ u 3 ( h 1 h 2 D 3 ) ) ∇ × H ‾ = 1 h 1 h 2 h 3 ∣ h 1 u 1 ^ h 2 u 2 ^ h 3 u 3 ^ ∂ ∂ u 1 ∂ ∂ u 2 ∂ ∂ u 3 h 1 H 1 h 2 H 2 h 3 H 3 ∣ \begin{aligned} &\nabla\phi=\hat{u_1}\frac{\partial{\phi}}{h_1\partial{u_1}}+\hat{u_2}\frac{\partial{\phi}}{h_2\partial{u_2}}+\hat{u_3}\frac{\partial{\phi}}{h_3\partial{u_3}}\\ &\nabla\cdot\overline{D}=\frac{1}{h_1h_2h_3}(\frac{\partial}{\partial{u_1}}(h_2h_3D_1)+\frac{\partial}{\partial{u_2}}(h_3h_1D_2)+\frac{\partial}{\partial{u_3}}(h_1h_2D_3))\\ &\nabla\times\overline{H}=\frac{1}{h_1h_2h_3}\left |\begin{array}{cccc} h_1\hat{u_1} &h_2\hat{u_2} & h_3\hat{u_3} \\ \frac{\partial}{\partial{u_1}} &\frac{\partial}{\partial{u_2}} & \frac{\partial}{\partial{u_3}} \\ h_1H_1 &h_2H_2 & h_3H_3 \\ \end{array}\right| \end{aligned} ϕ=u1^h1u1ϕ+u2^h2u2ϕ+u3^h3u3ϕD=h1h2h31(u1(h2h3D1)+u2(h3h1D2)+u3(h1h2D3))×H=h1h2h31h1u1^u1h1H1h2u2^u2h2H2h3u3^u3h3H3
然后我们讨论Maxwell方程组,其微分形式如下:
{ ∇ × E ‾ = − ∂ B ‾ ∂ t ∇ × H ‾ = J ‾ + ∂ D ‾ ∂ t ∇ ⋅ D ‾ = ρ ∇ ⋅ B ‾ = 0 \left\{ \begin{aligned} &\nabla\times\overline{E}=-\frac{\partial\overline{B}}{\partial{t}} \\ &\nabla\times\overline{H}=\overline{J}+\frac{\partial\overline{D}}{\partial{t}}\\ &\nabla\cdot\overline{D}=\rho\\ &\nabla\cdot\overline{B}=0 \end{aligned} \right. ×E=tB×H=J+tDD=ρB=0
由于 B ‾ = μ 0 H ‾ , D ‾ = ϵ 0 E ‾ \overline{B}=\mu_0\overline{H},\overline{D}=\epsilon_0\overline{E} B=μ0H,D=ϵ0E,在无源场( J ‾ = 0 \overline{J}=0 J=0)中有如下关系:
{ ∇ × E ‾ = − μ 0 ∂ B ‾ ∂ t ∇ × H ‾ = ϵ 0 ∂ D ‾ ∂ t \left\{ \begin{aligned} &\nabla\times\overline{E}=-\mu_0\frac{\partial\overline{B}}{\partial{t}} \\ &\nabla\times\overline{H}=\epsilon_0\frac{\partial\overline{D}}{\partial{t}} \end{aligned} \right. ×E=μ0tB×H=ϵ0tD
继续写下去:
∇ × ∇ × E ‾ = − μ 0 ∂ ∂ t ( ∇ × H ‾ ) = μ 0 ϵ 0 ∂ 2 ∂ t 2 E ‾ ∇ ( ∇ ⋅ E ‾ ) − ∇ 2 E ‾ = − μ 0 ϵ 0 ∂ 2 ∂ t 2 E ‾ \begin{aligned} \nabla\times\nabla\times\overline{E}&=-\mu_0\frac{\partial}{\partial{t}}(\nabla\times\overline{H})\\ &=\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}}\overline{E}\\ \nabla(\nabla\cdot\overline{E})-\nabla^2\overline{E}&=-\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}}\overline{E} \end{aligned} ××E(E)2E=μ0t(×H)=μ0ϵ0t22E=μ0ϵ0t22E
由于无源, ∇ ⋅ E ‾ = 0 \nabla\cdot\overline{E}=0 E=0,所以有:
( ∇ 2 − μ 0 ϵ 0 ∂ 2 ∂ t 2 ) E ‾ = 0 ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 − μ 0 ϵ 0 ∂ 2 ∂ t 2 ) E ‾ = 0 (\nabla^2-\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}})\overline{E}=0\\ (\frac{\partial^2}{\partial{x^2}}+\frac{\partial^2}{\partial{y^2}}+\frac{\partial^2}{\partial{z^2}}-\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}})\overline{E}=0 (2μ0ϵ0t22)E=0(x22+y22+z22μ0ϵ0t22)E=0
我们假设电场 E ‾ \overline{E} E具有最简单的形式,指向x方向,传播方向为z方向,即: E ‾ = x ^ E ( z , t ) \overline{E}=\hat{x}E_{(z,t)} E=x^E(z,t)
由于 E ( z , t ) E_{(z,t)} E(z,t)关于z和t的两次导数形式一样,猜想为余弦函数形式,配上系数得到 E ‾ = x ^ E 0 cos ⁡ ( k z − ω t ) \overline{E}=\hat{x}E_0\cos{(kz-\omega{t})} E=x^E0cos(kzωt),系数之间的关系为:
k 2 = μ 0 ϵ 0 ω 2 k^2=\mu_0\epsilon_0\omega^2 k2=μ0ϵ0ω2
此为色散方程, k k k为波数, ω \omega ω为角频率,波的传播速度为:
Δ z Δ t = ω k = 1 μ 0 ϵ 0 \frac{\Delta{z}}{\Delta{t}}=\frac{\omega}{k}=\frac{1}{\sqrt{\mu_0\epsilon_0}} ΔtΔz=kω=μ0ϵ0 1
之后我们求解磁场 H ‾ \overline{H} H:
− μ 0 ∂ ∂ t H ‾ = ( x ^ ∂ ∂ x + y ^ ∂ ∂ y + z ^ ∂ ∂ z ) × x ^ E 0 cos ⁡ ( k z − ω t ) η 0 ≡ μ 0 ϵ 0 H ‾ = y ^ E 0 η 0 cos ⁡ ( k z − ω t ) \begin{aligned} &-\mu_0\frac{\partial}{\partial{t}}\overline{H}=(\hat{x}\frac{\partial}{\partial{x}}+\hat{y}\frac{\partial}{\partial{y}}+\hat{z}\frac{\partial}{\partial{z}})\times\hat{x}E_0\cos{(kz-\omega{t})}\\ &\eta_0 \equiv\sqrt{\frac{\mu_0}{\epsilon_0}}\\ &\overline{H}=\hat{y}\frac{E_0}{\eta_0}\cos{(kz-\omega{t})} \end{aligned} μ0tH=(x^x+y^y+z^z)×x^E0cos(kzωt)η0ϵ0μ0 H=y^η0E0cos(kzωt)
从而可以看出,电场、磁场的幅值同大同小,以光速传播。
我们定义坡印廷矢量作为衡量电磁波能量的物理量:
S ‾ = E ‾ × H ‾ = z ^ E 0 2 η 0 cos ⁡ 2 ( k z − ω t ) \overline{S}=\overline{E}\times\overline{H}=\hat{z}\frac{E_0^2}{\eta_0}\cos^2{(kz-\omega{t})} S=E×H=z^η0E02cos2(kzωt)
然后我们来讨论电磁波的极化:
令一电场方程如下所示:
E ‾ ( z , t ) = x ^ E 0 cos ⁡ ( k z − ω t ) + y ^ E 1 cos ⁡ ( k z − ω t + ϕ ) \overline{E}_{(z,t)}=\hat{x}E_0\cos{(kz-\omega{t})}+\hat{y}E_1\cos{(kz-\omega{t}+\phi)} E(z,t)=x^E0cos(kzωt)+y^E1cos(kzωt+ϕ)
作归一化处理,令 A = E 1 E 0 ( A > 0 ) A=\frac{E_1}{E_0}(A>0) A=E0E1(A>0),
E ‾ ( z , t ) = x ^ cos ⁡ ( k z − ω t ) + y ^ A cos ⁡ ( k z − ω t + ϕ ) \overline{E}_{(z,t)}=\hat{x}\cos{(kz-\omega{t})}+\hat{y}A\cos{(kz-\omega{t}+\phi)} E(z,t)=x^cos(kzωt)+y^Acos(kzωt+ϕ)
当x,y方向的电场相位相同或相反时,合成的总电场方向始终不变,为线极化,即 ϕ = 2 m π \phi=2m\pi ϕ=2mπ ϕ = ( 2 m + 1 ) π , m ∈ Z \phi=(2m+1)\pi,m\in Z ϕ=(2m+1)π,mZ,此时有:
E ‾ ( z , t ) = x ^ cos ⁡ ( k z − ω t ) ± y ^ A cos ⁡ ( k z − ω t ) \overline{E}_{(z,t)}=\hat{x}\cos{(kz-\omega{t})}±\hat{y}A\cos{(kz-\omega{t})} E(z,t)=x^cos(kzωt)±y^Acos(kzωt)
ϕ = π 2 \phi=\frac{\pi}{2} ϕ=2π时,有:
E ‾ ( z , t ) = x ^ cos ⁡ ( k z − ω t ) − y ^ A sin ⁡ ( k z − ω t ) \overline{E}_{(z,t)}=\hat{x}\cos{(kz-\omega{t})}-\hat{y}A\sin{(kz-\omega{t})} E(z,t)=x^cos(kzωt)y^Asin(kzωt)
这时x,y方向的电场幅值满足椭圆关系,为椭圆极化即:
E x 2 + E y 2 A 2 = 1 E_x^2+\frac{E_y^2}{A^2}=1 Ex2+A2Ey2=1
注意到,当z=0时,随着 t t t的增加,最初 E x E_x Ex逐渐减小, E y E_y Ey逐渐增大,逆着电场传播方向(即 z z z方向)看,电场方向作逆时针移动,此时用右手螺旋握法,大拇指指向电场传播方向,四指即为电场方向的移动方向,所以这种情况为右旋椭圆极化。
同理,当 ϕ = − π 2 \phi=-\frac{\pi}{2} ϕ=2π时,为左旋椭圆极化。
当A=1时,满足 E x 2 + E y 2 = 1 E_x^2+E_y^2=1 Ex2+Ey2=1,为圆极化。

  • 2
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值