# 场波知识整理——1.1数学基础、电磁波的极化方式

3 篇文章 0 订阅

1.梯度
g r a d f = lim ⁡ Δ V → 0 ∯ Δ S f d S → Δ V = x ^ ∂ f ∂ x + y ^ ∂ f ∂ y + z ^ ∂ f ∂ z ∇ ≡ x ^ ∂ ∂ x + y ^ ∂ ∂ y + z ^ ∂ ∂ z g r a d f = ∇ f \begin{aligned} &grad f=\lim_{\Delta V\rightarrow0}\frac{\oiint_{\Delta S}{fd\overrightarrow{S}}}{\Delta V}=\hat{x}\frac{\partial{f}}{\partial{x}}+\hat{y}\frac{\partial{f}}{\partial{y}}+\hat{z}\frac{\partial{f}}{\partial{z}}\\ &\nabla \equiv \hat{x}\frac{\partial}{\partial{x}}+\hat{y}\frac{\partial}{\partial{y}}+\hat{z}\frac{\partial}{\partial{z}}\\ &grad f=\nabla f \end{aligned}

2.散度（沿矢量方向变化）
d i v A → = lim ⁡ Δ V → 0 ∯ Δ S A → d S → Δ V = x ^ ∂ A x ∂ x + y ^ ∂ A y ∂ y + z ^ ∂ A z ∂ z d i v A → ≡ ∇ ⋅ A ∭ V ∇ ⋅ A → d V = ∯ Δ S A → d S → \begin{aligned} &div\overrightarrow{A}=\lim_{\Delta{V}\rightarrow0}\frac{\oiint_{\Delta S}{\overrightarrow{A}d\overrightarrow{S}}}{\Delta V}=\hat{x}\frac{\partial{A_x}}{\partial{x}}+\hat{y}\frac{\partial{A_y}}{\partial{y}}+\hat{z}\frac{\partial{A_z}}{\partial{z}}\\ &div \overrightarrow{A} \equiv \nabla \cdot A\\ &\iiint_{V}\nabla\cdot\overrightarrow{A}dV=\oiint_{\Delta S}{\overrightarrow{A}d\overrightarrow{S}} \end{aligned}
3.旋度（垂直于矢量方向变化）
c u r l A → = lim ⁡ Δ S → 0 ∮ A → d l → Δ S ∭ V ∇ × A → = ∯ S d S → × A → ∬ S ( ∇ × A → ) d S → = ∮ C A → d l → \begin{aligned} &curl\overrightarrow{A}=\lim_{\Delta{S}\rightarrow{0}} {\frac{\oint{\overrightarrow{A}d\overrightarrow{l}}}{\Delta{S}}} \\ &\iiint_V{\nabla\times\overrightarrow{A}}=\oiint_S{d\overrightarrow{S}\times{\overrightarrow{A}}}\\ &\iint_S({\nabla\times\overrightarrow{A}})d\overrightarrow{S}=\oint_C{\overrightarrow{A}d\overrightarrow{l}} \end{aligned}

∇ × ( ∇ ϕ ) = 0 ∇ ⋅ ( ∇ × A ‾ ) = 0 ∇ ⋅ ( A ‾ × B ‾ ) = B ‾ ⋅ ( ∇ × A ‾ ) − A ‾ ⋅ ( ∇ × B ‾ ) ∇ × ( ∇ × A ‾ ) = ∇ ( ∇ ⋅ A ‾ ) − ∇ 2 A ‾ C ‾ × ( A ‾ × B ‾ ) = A ‾ ( C ‾ ⋅ B ‾ ) − ( C ‾ ⋅ A ‾ ) B ‾ \begin{aligned} &\nabla\times(\nabla\phi)=0\\ &\nabla\cdot(\nabla\times\overline{A})=0\\ &\nabla\cdot(\overline{A}\times\overline{B})=\overline{B}\cdot(\nabla\times\overline{A})-\overline{A}\cdot(\nabla\times\overline{B})\\ &\nabla\times(\nabla\times\overline{A})=\nabla(\nabla\cdot\overline{A})-\nabla^2{\overline{A}}\\ &\overline{C}\times(\overline{A}\times\overline{B})=\overline{A}(\overline{C}\cdot\overline{B})-(\overline{C}\cdot\overline{A})\overline{B} \end{aligned}

∇ ϕ = u 1 ^ ∂ ϕ h 1 ∂ u 1 + u 2 ^ ∂ ϕ h 2 ∂ u 2 + u 3 ^ ∂ ϕ h 3 ∂ u 3 ∇ ⋅ D ‾ = 1 h 1 h 2 h 3 ( ∂ ∂ u 1 ( h 2 h 3 D 1 ) + ∂ ∂ u 2 ( h 3 h 1 D 2 ) + ∂ ∂ u 3 ( h 1 h 2 D 3 ) ) ∇ × H ‾ = 1 h 1 h 2 h 3 ∣ h 1 u 1 ^ h 2 u 2 ^ h 3 u 3 ^ ∂ ∂ u 1 ∂ ∂ u 2 ∂ ∂ u 3 h 1 H 1 h 2 H 2 h 3 H 3 ∣ \begin{aligned} &\nabla\phi=\hat{u_1}\frac{\partial{\phi}}{h_1\partial{u_1}}+\hat{u_2}\frac{\partial{\phi}}{h_2\partial{u_2}}+\hat{u_3}\frac{\partial{\phi}}{h_3\partial{u_3}}\\ &\nabla\cdot\overline{D}=\frac{1}{h_1h_2h_3}(\frac{\partial}{\partial{u_1}}(h_2h_3D_1)+\frac{\partial}{\partial{u_2}}(h_3h_1D_2)+\frac{\partial}{\partial{u_3}}(h_1h_2D_3))\\ &\nabla\times\overline{H}=\frac{1}{h_1h_2h_3}\left |\begin{array}{cccc} h_1\hat{u_1} &h_2\hat{u_2} & h_3\hat{u_3} \\ \frac{\partial}{\partial{u_1}} &\frac{\partial}{\partial{u_2}} & \frac{\partial}{\partial{u_3}} \\ h_1H_1 &h_2H_2 & h_3H_3 \\ \end{array}\right| \end{aligned}

{ ∇ × E ‾ = − ∂ B ‾ ∂ t ∇ × H ‾ = J ‾ + ∂ D ‾ ∂ t ∇ ⋅ D ‾ = ρ ∇ ⋅ B ‾ = 0 \left\{ \begin{aligned} &\nabla\times\overline{E}=-\frac{\partial\overline{B}}{\partial{t}} \\ &\nabla\times\overline{H}=\overline{J}+\frac{\partial\overline{D}}{\partial{t}}\\ &\nabla\cdot\overline{D}=\rho\\ &\nabla\cdot\overline{B}=0 \end{aligned} \right.

{ ∇ × E ‾ = − μ 0 ∂ B ‾ ∂ t ∇ × H ‾ = ϵ 0 ∂ D ‾ ∂ t \left\{ \begin{aligned} &\nabla\times\overline{E}=-\mu_0\frac{\partial\overline{B}}{\partial{t}} \\ &\nabla\times\overline{H}=\epsilon_0\frac{\partial\overline{D}}{\partial{t}} \end{aligned} \right.

∇ × ∇ × E ‾ = − μ 0 ∂ ∂ t ( ∇ × H ‾ ) = μ 0 ϵ 0 ∂ 2 ∂ t 2 E ‾ ∇ ( ∇ ⋅ E ‾ ) − ∇ 2 E ‾ = − μ 0 ϵ 0 ∂ 2 ∂ t 2 E ‾ \begin{aligned} \nabla\times\nabla\times\overline{E}&=-\mu_0\frac{\partial}{\partial{t}}(\nabla\times\overline{H})\\ &=\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}}\overline{E}\\ \nabla(\nabla\cdot\overline{E})-\nabla^2\overline{E}&=-\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}}\overline{E} \end{aligned}

( ∇ 2 − μ 0 ϵ 0 ∂ 2 ∂ t 2 ) E ‾ = 0 ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 − μ 0 ϵ 0 ∂ 2 ∂ t 2 ) E ‾ = 0 (\nabla^2-\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}})\overline{E}=0\\ (\frac{\partial^2}{\partial{x^2}}+\frac{\partial^2}{\partial{y^2}}+\frac{\partial^2}{\partial{z^2}}-\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}})\overline{E}=0

k 2 = μ 0 ϵ 0 ω 2 k^2=\mu_0\epsilon_0\omega^2

Δ z Δ t = ω k = 1 μ 0 ϵ 0 \frac{\Delta{z}}{\Delta{t}}=\frac{\omega}{k}=\frac{1}{\sqrt{\mu_0\epsilon_0}}

− μ 0 ∂ ∂ t H ‾ = ( x ^ ∂ ∂ x + y ^ ∂ ∂ y + z ^ ∂ ∂ z ) × x ^ E 0 cos ⁡ ( k z − ω t ) η 0 ≡ μ 0 ϵ 0 H ‾ = y ^ E 0 η 0 cos ⁡ ( k z − ω t ) \begin{aligned} &-\mu_0\frac{\partial}{\partial{t}}\overline{H}=(\hat{x}\frac{\partial}{\partial{x}}+\hat{y}\frac{\partial}{\partial{y}}+\hat{z}\frac{\partial}{\partial{z}})\times\hat{x}E_0\cos{(kz-\omega{t})}\\ &\eta_0 \equiv\sqrt{\frac{\mu_0}{\epsilon_0}}\\ &\overline{H}=\hat{y}\frac{E_0}{\eta_0}\cos{(kz-\omega{t})} \end{aligned}

S ‾ = E ‾ × H ‾ = z ^ E 0 2 η 0 cos ⁡ 2 ( k z − ω t ) \overline{S}=\overline{E}\times\overline{H}=\hat{z}\frac{E_0^2}{\eta_0}\cos^2{(kz-\omega{t})}

E ‾ ( z , t ) = x ^ E 0 cos ⁡ ( k z − ω t ) + y ^ E 1 cos ⁡ ( k z − ω t + ϕ ) \overline{E}_{(z,t)}=\hat{x}E_0\cos{(kz-\omega{t})}+\hat{y}E_1\cos{(kz-\omega{t}+\phi)}

E ‾ ( z , t ) = x ^ cos ⁡ ( k z − ω t ) + y ^ A cos ⁡ ( k z − ω t + ϕ ) \overline{E}_{(z,t)}=\hat{x}\cos{(kz-\omega{t})}+\hat{y}A\cos{(kz-\omega{t}+\phi)}

E ‾ ( z , t ) = x ^ cos ⁡ ( k z − ω t ) ± y ^ A cos ⁡ ( k z − ω t ) \overline{E}_{(z,t)}=\hat{x}\cos{(kz-\omega{t})}±\hat{y}A\cos{(kz-\omega{t})}
ϕ = π 2 \phi=\frac{\pi}{2} 时，有：
E ‾ ( z , t ) = x ^ cos ⁡ ( k z − ω t ) − y ^ A sin ⁡ ( k z − ω t ) \overline{E}_{(z,t)}=\hat{x}\cos{(kz-\omega{t})}-\hat{y}A\sin{(kz-\omega{t})}

E x 2 + E y 2 A 2 = 1 E_x^2+\frac{E_y^2}{A^2}=1

• 2
点赞
• 0
评论
• 2
收藏
• 一键三连
• 扫一扫，分享海报

05-25

04-29 6170
10-31 225
03-23 730
08-03 821
11-13 2344
06-23 2万+
12-02 7502
09-08 5819
03-04 1万+
08-01 1万+