浙江大学PTA 习题3.3 线性表元素的区间删除 (20分) 多种算法详解

题目

给定一个顺序存储的线性表,请设计一个函数删除所有值大于min而且小于max的元素。删除后表中剩余元素保持顺序存储,并且相对位置不能改变。

函数接口定义:

List Delete( List L, ElementType minD, ElementType maxD );

其中List结构定义如下:

typedef int Position;
typedef struct LNode *List;
struct LNode {
    ElementType Data[MAXSIZE];
    Position Last; /* 保存线性表中最后一个元素的位置 */
};

L是用户传入的一个线性表,其中ElementType元素可以通过>、==、<进行比较;minD和maxD分别为待删除元素的值域的下、上界。函数Delete应将Data[]中所有值大于minD而且小于maxD的元素删除,同时保证表中剩余元素保持顺序存储,并且相对位置不变,最后返回删除后的表。

裁判测试程序样例:
#include <stdio.h>

#define MAXSIZE 20
typedef int ElementType;

typedef int Position;
typedef struct LNode *List;
struct LNode {
    ElementType Data[MAXSIZE];
    Position Last; /* 保存线性表中最后一个元素的位置 */
};

List ReadInput(); /* 裁判实现,细节不表。元素从下标0开始存储 */
void PrintList( List L ); /* 裁判实现,细节不表 */
List Delete( List L, ElementType minD, ElementType maxD );

int main()
{
    List L;
    ElementType minD, maxD;
    int i;

    L = ReadInput();
    scanf("%d %d", &minD, &maxD);
    L = Delete( L, minD, maxD );
    PrintList( L );

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:
10
4 -8 2 12 1 5 9 3 3 10
0 4

输出样例:
4 -8 12 5 9 10

题解

1.一个一个地移动,时间复杂度O(N2)

这是最笨,最容易想到的了,但是过不了时间复杂度的测试点。

List Delete( List L, ElementType minD, ElementType maxD ){
        
        int i,j;
        for(i=0;i<=L->Last;i++){
            if(L->Data[i]>minD&&L->Data[i]<maxD){
                //n=L->Last-i;
                j=i;
                while(j<=L->Last){
                    L->Data[j]=L->Data[j+1];
                    j++;
                }
                L->Last--;
                i--;
            }
        }
        return L;
}

2.将不会被删除的保留到临时数组

这个方法能通过所有测试点,但是似乎也有点笨,看方法3。

List Delete( List L, ElementType minD, ElementType maxD ){
    ElementType temp[MAXSIZE];
    int i,j=0;
    for(i=0;i<=L->Last;i++){
        if(L->Data[i]>=maxD||L->Data[i]<=minD)
            temp[j++]=L->Data[i];  
    }
    for(i=0;i<=j;i++){
        L->Data[i]=temp[i];
    }
    L->Last=j-1;
    return L;
}

3.方法二的升级版

不使用临时数组,直接存到L->Data这个数组中:

List Delete( List L, ElementType minD, ElementType maxD ){
    int i,j=0;
    for(i=0;i<=L->Last;i++){
        if(L->Data[i]>=maxD||L->Data[i]<=minD)
            L->Data[j++]=L->Data[i];  
    }
    L->Last=j-1;
    return L;
}

4.一个不容易想到的算法

思路大概是遍历一遍数组Data[],遇到需要删除的计数count加一,遇到不需要删除的就把这个数向前移count个位置。假如,前面我们已经删除了两个了,这个时候count=2,如果后面的数都是不需要删除的,直接在遍历到这个数时向前移动两个位置,代码如下:

List Delete( List L, ElementType minD, ElementType maxD ){
    int i,m=0;
    for(i=0;i<=L->Last;i++){
        if(L->Data[i]>minD&&L->Data[i]<maxD)
            m++;
        else
            L->Data[i-m]=L->Data[i];
    }
    L->Last-=m;
    return L;
}

总结

其实这道题也比较简单,但是第四种算法真的不太好理解,也不容易想到,这里整理一下。算法题很自由,想用什么变量用什么变量,想给什么操作计数就给什么操作计数,但是我们要多想想哪些操作、哪些变量才是其中的key。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值