题目
给定一个顺序存储的线性表,请设计一个函数删除所有值大于min而且小于max的元素。删除后表中剩余元素保持顺序存储,并且相对位置不能改变。
函数接口定义:
List Delete( List L, ElementType minD, ElementType maxD );
其中List结构定义如下:
typedef int Position;
typedef struct LNode *List;
struct LNode {
ElementType Data[MAXSIZE];
Position Last; /* 保存线性表中最后一个元素的位置 */
};
L是用户传入的一个线性表,其中ElementType元素可以通过>、==、<进行比较;minD和maxD分别为待删除元素的值域的下、上界。函数Delete应将Data[]中所有值大于minD而且小于maxD的元素删除,同时保证表中剩余元素保持顺序存储,并且相对位置不变,最后返回删除后的表。
裁判测试程序样例:
#include <stdio.h>
#define MAXSIZE 20
typedef int ElementType;
typedef int Position;
typedef struct LNode *List;
struct LNode {
ElementType Data[MAXSIZE];
Position Last; /* 保存线性表中最后一个元素的位置 */
};
List ReadInput(); /* 裁判实现,细节不表。元素从下标0开始存储 */
void PrintList( List L ); /* 裁判实现,细节不表 */
List Delete( List L, ElementType minD, ElementType maxD );
int main()
{
List L;
ElementType minD, maxD;
int i;
L = ReadInput();
scanf("%d %d", &minD, &maxD);
L = Delete( L, minD, maxD );
PrintList( L );
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
4 -8 2 12 1 5 9 3 3 10
0 4
输出样例:
4 -8 12 5 9 10
题解
1.一个一个地移动,时间复杂度O(N2)
这是最笨,最容易想到的了,但是过不了时间复杂度的测试点。
List Delete( List L, ElementType minD, ElementType maxD ){
int i,j;
for(i=0;i<=L->Last;i++){
if(L->Data[i]>minD&&L->Data[i]<maxD){
//n=L->Last-i;
j=i;
while(j<=L->Last){
L->Data[j]=L->Data[j+1];
j++;
}
L->Last--;
i--;
}
}
return L;
}
2.将不会被删除的保留到临时数组
这个方法能通过所有测试点,但是似乎也有点笨,看方法3。
List Delete( List L, ElementType minD, ElementType maxD ){
ElementType temp[MAXSIZE];
int i,j=0;
for(i=0;i<=L->Last;i++){
if(L->Data[i]>=maxD||L->Data[i]<=minD)
temp[j++]=L->Data[i];
}
for(i=0;i<=j;i++){
L->Data[i]=temp[i];
}
L->Last=j-1;
return L;
}
3.方法二的升级版
不使用临时数组,直接存到L->Data这个数组中:
List Delete( List L, ElementType minD, ElementType maxD ){
int i,j=0;
for(i=0;i<=L->Last;i++){
if(L->Data[i]>=maxD||L->Data[i]<=minD)
L->Data[j++]=L->Data[i];
}
L->Last=j-1;
return L;
}
4.一个不容易想到的算法
思路大概是遍历一遍数组Data[],遇到需要删除的计数count加一,遇到不需要删除的就把这个数向前移count个位置。假如,前面我们已经删除了两个了,这个时候count=2,如果后面的数都是不需要删除的,直接在遍历到这个数时向前移动两个位置,代码如下:
List Delete( List L, ElementType minD, ElementType maxD ){
int i,m=0;
for(i=0;i<=L->Last;i++){
if(L->Data[i]>minD&&L->Data[i]<maxD)
m++;
else
L->Data[i-m]=L->Data[i];
}
L->Last-=m;
return L;
}
总结
其实这道题也比较简单,但是第四种算法真的不太好理解,也不容易想到,这里整理一下。算法题很自由,想用什么变量用什么变量,想给什么操作计数就给什么操作计数,但是我们要多想想哪些操作、哪些变量才是其中的key。