innutritious
码龄4年
关注
提问 私信
  • 博客:29,193
    动态:6
    29,199
    总访问量
  • 65
    原创
  • 39,142
    排名
  • 47
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:我是fw。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广西
  • 加入CSDN时间: 2020-06-18
博客简介:

vegetabler的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    133
    当月
    1
个人成就
  • 获得124次点赞
  • 内容获得7次评论
  • 获得80次收藏
  • 代码片获得185次分享
创作历程
  • 11篇
    2024年
  • 54篇
    2020年
成就勋章
TA的专栏
  • C语言
    54篇
  • SDUT
    53篇
  • 数据结构
    16篇
  • 二叉树
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

车辆重识别(2022ACM SIGGRAPH调色板:图像到图像的扩散模型)论文阅读2024/10/09

本文基于条件扩散模型开发了一个统一的图像到图像翻译框架,并在四个具有挑战性的图像到图像翻译任务上对该框架进行了评估,即彩色化、修复、未裁剪和JPEG恢复。重要的是,我们提倡基于ImageNet的统一评价协议,以人为评价和样本质量分数( FID、Inception Score、预训练ResNet50网络的分类准确率和与原始图像的感知距离)。我们发现,虽然L2和L1在去噪目标中的损失产生了相似的样本质量分数,但L2导致了更高程度的模型样本多样性,而L1 产生了更保守的输出。
原创
发布博客 2024.10.09 ·
386 阅读 ·
8 点赞 ·
0 评论 ·
4 收藏

车辆重识别(2021NIPS无分类器扩散指南)论文阅读2024/10/08

我们证明了在没有分类器的情况下,指导确实可以由一个纯生成模型来执行:在我们称之为无分类器指导的情况下,我们联合训练一个有条件和无条件的扩散模型,并将得到的有条件和无条件的评分估计结合起来,以获得与使用分类器指导相似的样本质量和多样性之间的权衡。分类器指导使得扩散模型训练管道变得复杂,因为它需要训练一个额外的分类器,而这个分类器必须在有噪声的数据上训练,所以一般不可能插入预训练的分类器。这个是zt估计去噪之后的样本数据,然后再从特定的高斯分布中采样的到zt-1,然后再估计去噪后的样本数据。
原创
发布博客 2024.10.08 ·
535 阅读 ·
6 点赞 ·
0 评论 ·
1 收藏

车辆重识别(注意力 U-Net:学习在哪些区域寻找胰腺)论文阅读2024/10/01

对于一张特征图来说,对于这张图中的每一个像素向量(例如a),计算该向量与所有像素向量的相似度,对这些相似度进行激活函数处理得到注意力得分。对注意力得分进行归一化得到a向量对所有像素向量的注意力权重,然后a向量对每一个像素向量的注意力权重与对应的值向量(有可能是对应的像素向量)相乘并求和,得到最终的更新特征。
原创
发布博客 2024.10.01 ·
589 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

车辆重识别(2021NIPS在图像合成方面,扩散模型打败了gans网络)论文阅读2024/10/01

向分类器中输入xt,发现与真实类别匹配概率小,计算对xt的梯度,让xt以一定的包含梯度的步幅进行移动,使得匹配概率增加。其实这里有点像之前卷积神经网络中参数w更新的原理,w也是在梯度方向上移动,以此来使得loss值最小。但是这两种算法不是简单的对xt进行处理,①是对预测的均值μ进行处理,让均值μ在梯度方向上移动。另外,s可以叫做学习率,主要是控制在梯度方向上移动的步幅,和之前卷积神经网络中的w更新公式中的学习率差不多。2,那么具体来说,如何根据当前时刻xt的梯度,来调整xt?BigGAN残差块是什么意思?
原创
发布博客 2024.10.01 ·
667 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

车辆重识别(2021ICML改进的去噪扩散概率模型)论文阅读2024/9/29

这项操作改变了每一时间步所加的噪声,进而改变了后续数据的分布。我们可以暂且认为控制了每一时间步所加入的噪声量,使得原本图像更慢地变为纯噪声数据,如果像之前的线性时间表,可能会出现图像已经变成纯噪声数据了,但是时间步还没到T,导致不断向图像加噪声,使得难以训练。这时候我们采取的方法是,把原来的loss值分解为各个时间步的loss值,对每个时间步的loss值进行优化,最后赋予权重,加起来求期望。现有的采样技术使得训练非常耗时,我们采用重要性采样,使得不用跟随时间步一步一步采样,只有前一步采样完后一步才能采样。
原创
发布博客 2024.09.30 ·
647 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

车辆重识别(利用扩散模型合成有效数据进行行人再识别预训练)论文阅读2024/9/27

在本文中,我们提出了一种新的范式Diffusion - ReID,在不需要任何数据收集和标注成本的情况下,基于已知的身份来有效地增强和生成多样化的图像。得益于我们提出的方法,我们首先创建了一个新的大规模行人重识别数据集Diff - Person,该数据集由来自5,183个身份的超过777K张图片组成。具体来说,LPE模块将特定的ID图像序列和类别级别的提示P作为输入,通过预训练的图像描述模型生成具有细粒度局部细节和全局上下文信息的增强提示PE。3 )特定的数据源限制了数据的数量和多样性。
原创
发布博客 2024.09.28 ·
687 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

车辆重识别(2020NIPS去噪扩散概率模型)论文阅读2024/9/27

从标准正太分布中采样得到z1,给出β1的值,对x0进行参数重整化,得到x1的值,形式上来看就是x1=x0+噪声,然后向参数网络中输入x0,t等数据,进行网络训练,使得所输出的预测噪声尽量和加入的噪声z1有较小的差距,一边扩散一边训练参数网络,直到结束。然后,我们在T个轮次中,不断向其加入高斯噪声(其实加入高斯噪声指的就是对于每一步的xt,对其参数重整化,也就是说让xt*σ+μ,当然这里的σ和μ都不是一个简单的值,使得经过处理之后的xt符合相应的高斯分布),使得最终的xT变成了一个各向独立的高斯分布。
原创
发布博客 2024.09.28 ·
648 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

车辆重识别(CVPR2016图像识别的深度残差学习ResNet)论文阅读2024/9/21

我们提出了一个残差学习框架,以减轻对比先前使用的深度更深的网络的训练。在形式上,我们将期望的底层映射表示为H ( x ),并让堆叠的非线性层拟合F ( x )的另一个映射:F ( x )= H ( x ) - x。引入了残差块的概念,使得网络能够学习输入与输出之间的残差,而不是直接学习期望映射,这大大简化了优化过程。归一化初始化和中间归一化层(如批归一化)是两种不同的技术,用于提高神经网络的训练效率,并解决梯度消失或爆炸的问题。为什么把上一层的输出与残差块后的输出相加,这样模型的性能就会更好?
原创
发布博客 2024.09.21 ·
427 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

车辆重识别(CVPR2024昼夜跨域车辆重识别)论文阅读2024/9/13

首先对于M(m,0),不要管数据的存放的形式,特征和高亮像素都在这里了,不管权重向量采用高斯分布或者均匀分布,得到的值都是大致在(-1,1)范围内,都是比较小的,那么说明在权重初始化阶段就对高亮像素进行抑制了,那么对于反向传播调整权重向量的参数来说,如果调整的值变小,说明抑制欠缺,如果调整的值变大,说明抑制过度。首先,经过池化后的输出特征图的通道数取决于输入特征图的通道数,然后全局平均池化指的是将每一个通道的特征图的尺寸作为感受野,然后对这张图的像素值求平均数作为这个通道最终得到的输出特征图。
原创
发布博客 2024.09.13 ·
277 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

车辆重识别(关于卷积神经网络一些资料)2024/9/11

假如x1,x2,x3是一张图片的数据,如果输出a为1,那么这张图片是狗,如果为0,那么这张图片是猫。比如三通道的图片,如图所示,我们暂且把它的这三张图称为上中下通道,在做卷积运算时,都有与其对应的卷积核的上中下通道,然后输入图片的上通道与卷积核的上通道进行卷积,输入图片的中通道与卷积核的中通道进行卷积,输入图片的下通道与卷积核的下通道进行卷积分别得到上通道特征图、中通道特征图、下通道特征图,最后这三个特征图合在一起成为最终的特征图(这个最终的特征图是单通道,也就是说输出特征图的通道数取决于卷积核的数量)。
原创
发布博客 2024.09.11 ·
633 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

车辆重识别(介绍,实现步骤,一些疑问)2024/9/11

对于车辆重识别也是这样,模型接收到一张车辆的照片(暂且把这辆车命名为B),确定了B的身份信息。当模型再次接收到B的不同照片(不同摄像机拍摄的,照片为不同角度的,车辆有东西遮挡的,不同光照条件的…)时,如何识别出照片中的车辆为B。当模型再次接收到A的不同照片(不同摄像机拍摄的,照片为不同角度的,人的姿势是不同的,人物有东西遮挡的,不同光照条件的…指标: 常用指标包括准确率(Accuracy)、查全率(Recall)、查准率(Precision)、均值平均精度(mAP)、召回率@K(Recall@K)等。
原创
发布博客 2024.09.11 ·
520 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

SDUT 数据结构之图论 从起点到终点的最短步数(BFS)

Description在古老的魔兽传说中,有两个军团,一个叫天灾,一个叫近卫。在他们所在的地域,有n个隘口,编号为1…n,某些隘口之间是有通道连接的。其中近卫军团在1号隘口,天灾军团在n号隘口。某一天,天灾军团的领袖巫妖王决定派兵攻打近卫军团,天灾军团的部队如此庞大,甚至可以填江过河。但是巫妖王不想付出不必要的代价,他想知道在不修建任何通道的前提下,部队是否可以通过隘口及其相关通道到达近卫军团展开攻击;如果可以的话,最少需要经过多少通道。由于n的值比较大(n<=1000),于是巫妖王找到了擅长编程的
原创
发布博客 2020.11.29 ·
252 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

SDUT 数据结构之图论 迷宫探索

Description有一个地下迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关;请问如何从某个起点开始在迷宫中点亮所有的灯并回到起点?Input连续T组数据输入,每组数据第一行给出三个正整数,分别表示地下迷宫的结点数N(1 < N <= 1000)、边数M(M <= 3000)和起始结点编号S,随后M行对应M条边,每行给出一对正整数,表示一条边相关联的两个顶点的编号。Output若可以点亮所有结点的灯,则输出从S开始并以S结束的序列,序列中相邻的
原创
发布博客 2020.11.29 ·
190 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

SDUT 数据结构之图论 判断可达性

Description在古老的魔兽传说中,有两个军团,一个叫天灾,一个叫近卫。在他们所在的地域,有n个隘口,编号为1…n,某些隘口之间是有通道连接的。其中近卫军团在1号隘口,天灾军团在n号隘口。某一天,天灾军团的领袖巫妖王决定派兵攻打近卫军团,天灾军团的部队如此庞大,甚至可以填江过河。但是巫妖王不想付出不必要的代价,他想知道在不修建任何通道的前提下,部队是否可以通过隘口及其相关通道到达近卫军团展开攻击。由于n的值比较大(n<=1000),于是巫妖王找到了擅长编程的你 =_=,请你帮他解决这个问题,否
原创
发布博客 2020.11.29 ·
143 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

SDUT 数据结构之图论 基于邻接矩阵的BFS

Description给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)Input输入第一行为整数n(0< n <100),表示数据的组数。对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。Output输出有n行,
原创
发布博客 2020.11.29 ·
131 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

SDUT 数据结构之图论 图的深度遍历

B - 数据结构实验之图论二:图的深度遍历Description请定一个无向图,顶点编号从0到n-1,用深度优先搜索(DFS),遍历并输出。遍历时,先遍历节点编号小的。Input输入第一行为整数n(0 < n < 100),表示数据的组数。 对于每组数据,第一行是两个整数k,m(0 < k < 100,0 < m < k*k),表示有m条边,k个顶点。 下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。Output输出有n行,对应n组输出,每行为用空格隔开的
原创
发布博客 2020.11.28 ·
163 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

SDUT数据结构之二叉树:(先序中序)还原二叉树

D - 数据结构实验之二叉树四:(先序中序)还原二叉树Description给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度。Input输入数据有多组,每组数据第一行输入1个正整数N(1 <= N <= 50)为树中结点总数,随后2行先后给出先序和中序遍历序列,均是长度为N的不包含重复英文字母(区分大小写)的字符串。Output输出一个整数,即该二叉树的高度。SampleInput9ABDFGHIECFDHGIBEACOutput5#include
原创
发布博客 2020.11.16 ·
157 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

C语言数据结构总结:树

树一,树的定义二,树的基本术语三,二叉树的定义四,二叉树的性质和存储结构五,关于二叉树的算法一,树的定义树是n(n>=0)个结点的有限集合。若n=0,称为空树。若n>0,则它满足如下两个条件; ①有且仅有一个特定的称为根(root)的结点。 ②其余结点可分为m(m>=0)个互不相交的有限集合T1,T2….其中每一个集合本身又是一棵树,并称为根的子树。二,树的基本术语①孩子与双亲:结点的子树的根称为该结点的孩子,该结点称为孩子的双亲。②根结点
原创
发布博客 2020.11.15 ·
348 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

SDUT 数据结构之串:学密码学一定得学程序

Description曾经,ZYJ同学非常喜欢密码学。有一天,他发现了一个很长很长的字符串S1。他很好奇那代表着什么,于是神奇的WL给了他另一个字符串S2。但是很不幸的是,WL忘记跟他说是什么意思了。这个时候,ZYJ不得不求助与伟大的ZP。ZP笑了笑说,这个很神奇的,WL的意思是只要你找到她给你的字符串在那个神奇的字符串的位置,你就会有神奇的发现。ZYJ恍然大悟,原来如此,但是悲剧来了,他竟然不知道怎么找。。。。是的,很囧是不是。所以这时候就需要化身为超级玛丽亚的你现身了,告诉他吧。。。。。。Inp
原创
发布博客 2020.11.06 ·
194 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多