算法系列之十二:多边形区域填充算法--改进的扫描线填充算法

三、改进的扫描线填充算法

        扫描线填充算法的原理和实现都很简单,但是因为要同时维护“活动边表(AET)”和“新边表(NET)”,对存储空间的要求比较高。这两张表的部分内容是重复的,而且“新边表”在很多情况下都是一张稀疏表,如果能对其进行改进,避免出现两张表,就可以节省存储空间,同时省去从“边表”生成“新边表”的开销,同时也省去了用“新边表”维护“活动边表”的开销,基于这个原则可以对原始扫描线算法进行改进。

3.1重新设计“活动边表”

        改进的算法仍然使用了“活动边表”的概念,但是不再构造独立的“活动边表”,而是直接在“边表”中划定一部分区间作为“活动边区间”,也就是说,把多边形的边分成两个子集,一个是与扫描线有交点的边的集合,另一个是与扫描线没有交点的边的集合。要达到这个目的,只需要对“活动边表”按照每条边的顶点ymax坐标排序即可。这个排序与原始扫描线算法中对“活动边表”的维护原理是一样的,因为只有边的ymax坐标区间内与扫描线有交点的边才可能是“活动边”。为了避免重复扫描整个“活动边表”,需要用一个first指针和一个last指针用于标识“活动边区间”。first指针之前的边都是已经处理过的边,同样,last指针之后的边都是还没有处理的边。每处理完一条扫描线,都要更新firstlast指针位置,调整last指针的位置将ymax大于当前扫描线的边纳入到“活动边区间”,同时调整first指针将处理完成的边排除在“活动边区间”之外。

        如果调整last指针的依据是边的ymax是否大于当前扫描线,那么调整first指针的依据是什么?也就是如何判断一条边已经处理完了?方法是在边(EDGE)定义中增加一个dy(Δy)属性,这个属性被初始化成这条边在y方向上的长度,每处理完一条扫描线,dy都要做减一处理,当dy0时,就说明这条边已经不与扫描线相交了,可以被排除在活动边区间之外。改进的扫描线算法的“边”的完整定义如下:

 7 typedefstruct tagEDGE2

 8 {

 9     double xi;

10     double dx;

11     int ymax;

12     int dy;

17 }EDGE2;

 

EDGE2定义中xidxymax的含义和原始算法中EDGE的定义相同,只是多了一个dy属性。

        每当处理一条扫描线时,除了“活动边区间”的first指针和last指针需要调整之外,还要将first指针和last指针之间的“活动边”按照xi从小到大的顺序排序,以保证填充算法能够用正确的交点线段序列画线填充。因此,每次调整“活动边区间”的first指针和last指针之后,都要对“活动边区间”重新排序,也就是说“活动边区间”内的各边的位置并不固定,会随着扫描线的变化而相应地变化。

        仍以图(6)所示的多边形为例,处理扫描线10时的“活动边表”状态如图(11-a)所示,而处理扫描线8时的“活动边表”状态则如图(11-b)所示。可以看出,当处理扫描线8时,“活动边区间”内的边的顺序有了调整,因为新加入的P6P1P1P2两条边与扫描线的交点坐标xiP5P6与扫描线的交点坐标xi小,因此排在P5P6前面。

 

 

图(11)改进的活动边表结构

 

 3.2新“活动边表”的构造与调整

         改进的扫描线算法的重点是“活动边表”的构造和调整。“活动边表”的构造方法如下:

 

(1)       首先剔除多边形各边的水平边,然后将剩下的边按照ymax的值从大到小顺序存入一个线性表中,表中第一个元素ymax值最大的表,最后一个元素是ymax值最小的边。对于各边中左、右顶点的情况需要和原始算法一样做调整,以免出现交点个数不正确的异常。这里对调整的策略再强调一下,调整都是针对边的终点进行的,对于图(10-a)所示的左顶点,需要先将P2点的坐标调整为(x2 – dx, y2 - 1),然后再求边的ymaxxidy。对于图(10-b)所示的右顶点,需要将P2点的坐标调整为(x2 + dx, y2 + 1),然后再求边的ymaxxidy

(2)       加入first指针和last指针,构成“活动边区间”。first指针和last指针之间的边都是和当前扫描线有交点的边或已经处理过的边,已经处理过的边的dy0,因此,对“活动边”扫描时需要忽略其中dy已经是0的边。这些已经处理过的边会加载在正常的边中,直到调整first指针时被剔除出“活动边区间”。

         “活动边表”的调整指的是在处理完每根扫描线之后,更新“活动边表”中“活动边区间”内的各边的相关属性的值,比如递减dy的值,调整交点xi坐标的值等等。根据EDGE2的定义,每根扫描线处理完之后需要对“活动边区间”内的边做如下调整:

 1)调整“活动边区间”中参与求交计算的各边的属性值,这些调整算法是:

      dy = dy – 1;

      xi = xi – dx;

 

2)调整“活动边区间”的first指针和last指针,使符合条件的新边加入到“活动边区间”,同时将处理完的边从“活动边区间”剔除。这些调整算法是:

      if(first所指边的Δy0)

          first=first+1;

 

      if(last所指的下一条边的ymax大于下一扫描线的y)

          last=last+1

 

3.3改进的扫描线填充算法实现

         首先定义“活动边表”,这是一个线性表,每个元素是一条边的全部属性,同时还要包含first指针和last指针,其数据结构定义如下:

19 typedefstruct tagSP_EDGES_TABLE

20 {

21     std::vector<EDGE2> slEdges;

22     int first;

23     int last;

24 }SP_EDGES_TABLE;

        改进的扫描线填充算法重点仍然是新“活动边表”的构造,这里给出构造新“活动边表”的算法实现:

36 void InitScanLineEdgesTable(SP_EDGES_TABLE& spET,const Polygon& py)

37 {

38     EDGE2 e;

39     for(int i = 0; i < py.GetPolyCount(); i++)

40     {

41         const Point& ps = py.pts[i];

42         const Point& pe = py.pts[(i+ 1)% py.GetPolyCount()];

43         const Point& pee = py.pts[(i+ 2)% py.GetPolyCount()];

44 

51         if(pe.y != ps.y) //不处理水平线

52         {

53             e.dx= double(pe.x- ps.x)/ double(pe.y- ps.y);

54             if(pe.y > ps.y)

55             {

56                 if(pe.y < pee.y) //左顶点

57                 {

58                     e.xi= pe.x - e.dx;

59                     e.ymax= pe.y - 1;

60                     e.dy= e.ymax - ps.y + 1;

61                 }

62                 else

63                 {

64                     e.xi= pe.x;

65                     e.ymax= pe.y;

66                     e.dy= pe.y - ps.y + 1;

67                 }

68             }

69             else //(pe.y < ps.y)

70             {

71                 if(pe.y > pee.y) //右顶点

72                 {

73                     e.xi= ps.x;

74                     e.ymax= ps.y;

75                     e.dy= ps.y - (pe.y + 1) + 1;

76                 }

77                 else

78                 {

79                     e.xi= ps.x;

80                     e.ymax= ps.y;

81                     e.dy= ps.y - pe.y + 1;

82                 }

83             }

84 

85             InsertEdgeToEdgesTable(e, spET.slEdges);

86         }

87     }

88     spET.first= spET.last = 0;

89 }

 Polygon定义了一个多边形,其pts数组按照顺序存放了多边形的各个顶点,InitScanLineEdgesTable()函数从Polygon中依次取出三个顶点,前两个顶点构成当前处理的边,后一个顶点用于辅助判断是否是左、右顶点的情况,如果是左、右顶点的情况,就要对边的终点的坐标做调整(调整的方法在3.2小节已经描述)。调整完线段终点坐标后构造边e,然后由InsertEdgeToEdgesTable()函数将e插入到线性表中,插入操作满足线性表按照ymax从大到小有序,这个是插入排序的基本算法,这里就不再列出代码。

        算法的另一个终点就是处理每条扫描线和“活动边表”的关系,计算出每条扫描线需要填充的区间。一下就是ProcessScanLineFill2()函数的实现:

189 void ScanLinePolygonFill2(const Polygon& py,int color)

190 {

191     assert(py.IsValid());

192 

193     int ymin = 0;

194     int ymax = 0;

195     GetPolygonMinMax(py, ymin, ymax);

196     SP_EDGES_TABLE spET;

197     InitScanLineEdgesTable(spET, py);

198     HorizonEdgeFill(py, color);//水'cb?平'c6?边'b1?直'd6?接'bd?画'bb?线'cf?填'cc?充'b3?

199     ProcessScanLineFill2(spET, ymin, ymax, color);

200 }

         ProcessScanLineFill2()函数依次处理每条扫描线,根据3.2节的算法描述,UpdateEdgesTableActiveRange()函数和SortActiveRangeByX()函数更新“活动边区间”并对区间内的边排序,FillActiveRangeScanLine函数从“活动边区间”内依次取出两个交点组成填充区间,调用前面介绍的DrawHorizontalLine()函数完成画线填充,UpdateActiveRangeIntersection()函数则根据3.2节的算法描述更新参与求交计算的各边的属性值。这四个函数的实现都很简单,结合3.2节的算法描述很容易理解,此处仅列出代码,不做过多解释。

 91 void UpdateEdgesTableActiveRange(SP_EDGES_TABLE& spET,int yScan)

 92 {

 93     std::vector<EDGE2>& slET= spET.slEdges;

 94     int edgesCount = static_cast<int>(slET.size());

 95     while((spET.last< (edgesCount - 1)) && (slET[spET.last+ 1].ymax>= yScan))

 96     {

 97         spET.last++;

 98     }

 99 

100     while(slET[spET.first].dy== 0)

101     {

102         spET.first++;

103     }

104 }

125 void FillActiveRangeScanLine(SP_EDGES_TABLE& spET,int yScan, int color)

126 {

127     std::vector<EDGE2>& slET= spET.slEdges;

128     int pos = spET.first;

129 

130     do

131     {

132         pos = GetIntersectionInActiveRange(spET, pos);

133         if(pos != -1)

134         {

135             int x1 = ROUND_INT(slET[pos].xi);

136             pos = GetIntersectionInActiveRange(spET, pos+ 1);

137             if(pos != -1)

138             {

139                 int x2 = ROUND_INT(slET[pos].xi);

140                 pos++;

141                 DrawHorizontalLine(x1, x2, yScan, color);

142             }

143             else

144             {

145                 assert(false);

146             }

147         }

148     }while(pos != -1);

149 }

150 

151 bool EdgeXiComparator2(EDGE2& e1, EDGE2& e2)

152 {

153     return (e1.xi< e2.xi);

154 }

155 

156 void SortActiveRangeByX(SP_EDGES_TABLE& spET)

157 {

158     std::vector<EDGE2>& slET= spET.slEdges;

159 

160     sort(slET.begin()+ spET.first,

161         slET.begin()+ spET.last + 1,

162         EdgeXiComparator2);

163 }

164 

165 void UpdateActiveRangeIntersection(SP_EDGES_TABLE& spET)

166 {

167     for(int pos= spET.first; pos<= spET.last; pos++)

168     {

169         if(spET.slEdges[pos].dy> 0)

170         {

171             spET.slEdges[pos].dy--;

172             spET.slEdges[pos].xi-= spET.slEdges[pos].dx;

173         }

174     }

175 }

176 

177 void ProcessScanLineFill2(SP_EDGES_TABLE& spET,

178                          int ymin, int ymax, int color)

179 {

180     for (int yScan= ymax; yScan >= ymin; yScan--)

181     {

182         UpdateEdgesTableActiveRange(spET, yScan);

183         SortActiveRangeByX(spET);

184         FillActiveRangeScanLine(spET, yScan, color);

185         UpdateActiveRangeIntersection(spET);

186     }

187 }

 

<下一篇:边标志填充算法>


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值