力扣刷题(初级算法)

力扣刷题(初级算法)

每日一题

数组

1. 删除排序数组中的重复项

给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。

不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。

说明:

为什么返回数值是整数,但输出的答案是数组呢?

请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。

你可以想象内部操作如下:

// nums 是以“引用”方式传递的。也就是说,不对实参做任何拷贝
int len = removeDuplicnumstes(nums);

// 在函数里修改输入数组对于调用者是可见的。
// 根据你的函数返回的长度, 它会打印出数组中 该长度范围内 的所有元素。
for (int i = 0; i < len; i++) {
    print(nums[i]);
}

示例 1:

输入:nums = [1,1,2]
输出:2, nums = [1,2]
解释:函数应该返回新的长度 2 ,并且原数组 nums 的前两个元素被修改为 1, 2 。不需要考虑数组中超出新长度后面的元素。

示例 2:

输入:nums = [0,0,1,1,1,2,2,3,3,4]
输出:5, nums = [0,1,2,3,4]
解释:函数应该返回新的长度 5 , 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4 。不需要考虑数组中超出新长度后面的元素。

提示:

0 <= nums.length <= 3 * 104
-104 <= nums[i] <= 104
nums 已按升序排列

解题

因为数组是排序的,只要是相同的肯定是挨着的,我们只需要遍历所有数组,然后前后两两比较,如果有相同的就把后面的给删除。

1,双指针解决

使用两个指针,右指针始终往右移动,

如果右指针指向的值等于左指针指向的值,左指针不动。
如果右指针指向的值不等于左指针指向的值,那么左指针往右移一步,然后再把右指针指向的值赋给左指针。

//双指针解决
public int removeDuplicnumstes(int[] nums) {
    //边界条件判断
    if (nums == null || nums.length == 0)
        return 0;
    int left = 0;
    for (int right = 1; right < nums.length; right++)
        //如果左指针和右指针指向的值一样,说明有重复的,
        //这个时候,左指针不动,右指针继续往右移。如果他俩
        //指向的值不一样就把右指针指向的值往前挪
        if (nums[left] != nums[right])
            nums[++left] = nums[right];
    return ++left;
}

2. 买卖股票的最佳时机 II

给定一个数组 prices ,其中 prices[i] 是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: prices = [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例 2:

输入: prices = [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入: prices = [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

1 <= prices.length <= 3 * 104
0 <= prices[i] <= 104

解题

贪心算法(英语:greedy algorithm),又称贪婪算法,是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。[1]比如在旅行推销员问题中,如果旅行员每次都选择最近的城市,那这就是一种贪心算法。

贪心算法在有最优子结构的问题中尤为有效。最优子结构的意思是局部最优解能决定全局最优解。简单地说,问题能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。

所以,只需要比较后一天是否比前一天大,大的话将其累加。

class Solution {
    public int maxProfit(int[] prices) {

        int profit = 0;
        for (int i = 1; i < prices.length; i++){
            if (prices[i]>prices[i-1]){
                profit += (prices[i]-prices[i-1]);
            }
        }
        return profit;
        
    }
}

旋转数组

给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数。
示例 1:

输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右旋转 1 步: [7,1,2,3,4,5,6]
向右旋转 2 步: [6,7,1,2,3,4,5]
向右旋转 3 步: [5,6,7,1,2,3,4]

示例 2:

输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释: 
向右旋转 1 步: [99,-1,-100,3]
向右旋转 2 步: [3,99,-1,-100]

解题

    public void rotate(int[] nums, int k) {
        int length = nums.length;
        int temp[] = new int[length];
        //把原数组值放到一个临时数组中,
        for (int i = 0; i < length; i++) {
            temp[i] = nums[i];
        }
        //然后在把临时数组的值重新放到原数组,并且往右移动k位
        for (int i = 0; i < length; i++) {
            nums[(i + k) % length] = temp[i];
        }

        for (int i:
             nums) {
            System.out.println(i);
        }
    }

可以使用一个临时数组,先把原数组的值存放到一个临时数组中,然后再把临时数组的值重新赋给原数组,重新赋值的时候要保证每个元素都要往后移k位,如果超过数组的长度就从头开始,所以这里可以使用(i + k) % length来计算重新赋值的元素下标
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值