面试中所有二叉树题目总结(java版)

<span style="font-size:18px;">package BinaryTreeSummary;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.Stack;

/**
 * http://blog.csdn.net/luckyxiaoqiang/article/details/7518888  轻松搞定面试中的二叉树题目
 * http://www.cnblogs.com/Jax/archive/2009/12/28/1633691.html  算法大全(3) 二叉树
 * 
 * TODO: 一定要能熟练地写出所有问题的递归和非递归做法!
 *
 * 1. 求二叉树中的节点个数: getNodeNumRec(递归),getNodeNum(迭代)
 * 2. 求二叉树的深度: getDepthRec(递归),getDepth 
 * 3. 前序遍历,中序遍历,后序遍历: preorderTraversalRec, preorderTraversal, inorderTraversalRec, postorderTraversalRec
 * (https://en.wikipedia.org/wiki/Tree_traversal#Pre-order_2)
 * 4.分层遍历二叉树(按层次从上往下,从左往右): levelTraversal, levelTraversalRec(递归解法!)
 * 5. 将二叉查找树变为有序的双向链表: convertBST2DLLRec, convertBST2DLL
 * 6. 求二叉树第K层的节点个数:getNodeNumKthLevelRec, getNodeNumKthLevel
 * 7. 求二叉树中叶子节点的个数:getNodeNumLeafRec, getNodeNumLeaf
 * 8. 判断两棵二叉树是否相同的树:isSameRec, isSame
 * 9. 判断二叉树是不是平衡二叉树:isAVLRec
 * 10. 求二叉树的镜像(破坏和不破坏原来的树两种情况):mirrorRec, mirrorCopyRec
 * 10.1 判断两个树是否互相镜像:isMirrorRec
 * 11. 求二叉树中两个节点的最低公共祖先节点:getLastCommonParent, getLastCommonParentRec, getLastCommonParentRec2
 * 12. 求二叉树中节点的最大距离:getMaxDistanceRec
 * 13. 由前序遍历序列和中序遍历序列重建二叉树:rebuildBinaryTreeRec
 * 14.判断二叉树是不是完全二叉树:isCompleteBinaryTree, isCompleteBinaryTreeRec
 * 
 */
public class Demo {

	/*
	 			 1 
		        / \ 
		       2   3 
		      / \   \ 
		     4  5   6 
	 */
	public static void main(String[] args) {
		TreeNode r1 = new TreeNode(1);
		TreeNode r2 = new TreeNode(2);
		TreeNode r3 = new TreeNode(3);
		TreeNode r4 = new TreeNode(4);
		TreeNode r5 = new TreeNode(5);
		TreeNode r6 = new TreeNode(6);
		
		r1.left = r2;
		r1.right = r3;
		r2.left = r4;
		r2.right = r5;
		r3.right = r6;
		
//		System.out.println(getNodeNumRec(r1));
//		System.out.println(getNodeNum(r1));
//		System.out.println(getDepthRec(r1));
//		System.out.println(getDepth(r1));
		
//		preorderTraversalRec(r1);
//		System.out.println();
//		preorderTraversal(r1);
//		System.out.println();
//		inorderTraversalRec(r1);
//		System.out.println();
//		inorderTraversal(r1);
//		System.out.println();
//		postorderTraversalRec(r1);
//		System.out.println();
//		postorderTraversal(r1);
//		System.out.println();
//		levelTraversal(r1);
//		System.out.println();
//		levelTraversalRec(r1);
//		System.out.println();
		
//		TreeNode tmp = convertBSTRec(r1);
//		while(true){
//			if(tmp == null){
//				break;
//			}
//			System.out.print(tmp.val + " ");
//			if(tmp.right == null){
//				break;
//			}
//			tmp = tmp.right;
//		}
//		System.out.println();
//		while(true){
//			if(tmp == null){
//				break;
//			}
//			System.out.print(tmp.val + " ");
//			if(tmp.left == null){
//				break;
//			}
//			tmp = tmp.left;
//		}
		
		
//		TreeNode tmp = convertBST2DLL(r1);
//		while(true){
//			if(tmp == null){
//				break;
//			}
//			System.out.print(tmp.val + " ");
//			if(tmp.right == null){
//				break;
//			}
//			tmp = tmp.right;
//		}
		
//		System.out.println(getNodeNumKthLevelRec(r1, 2));
//		System.out.println(getNodeNumKthLevel(r1, 2));
		
//		System.out.println(getNodeNumLeafRec(r1));
//		System.out.println(getNodeNumLeaf(r1));
		
//		System.out.println(isSame(r1, r1));
//		inorderTraversal(r1);
//		System.out.println();
//		mirror(r1);
//		TreeNode mirrorRoot = mirrorCopy(r1);
//		inorderTraversal(mirrorRoot);
		
		System.out.println(isCompleteBinaryTree(r1));
		System.out.println(isCompleteBinaryTreeRec(r1));
		
	}

	private static class TreeNode {
		int val;
		TreeNode left;
		TreeNode right;

		public TreeNode(int val) {
			this.val = val;
		}
	}

	/**
	 * 求二叉树中的节点个数递归解法: O(n)
	 * (1)如果二叉树为空,节点个数为0 
	 * (2)如果二叉树不为空,二叉树节点个数 = 左子树节点个数 +
	 *    	      右子树节点个数 + 1
	 */
	public static int getNodeNumRec(TreeNode root) {
		if (root == null) {
			return 0;
		} else {
			return getNodeNumRec(root.left) + getNodeNumRec(root.right) + 1;
		}
	}
	
	/**
	 *  求二叉树中的节点个数迭代解法O(n):基本思想同LevelOrderTraversal,
	 *  即用一个Queue,在Java里面可以用LinkedList来模拟 
	 */
	public static int getNodeNum(TreeNode root) {
		if(root == null){
			return 0;
		}
		int count = 1;
		Queue<TreeNode> queue = new LinkedList<TreeNode>();
		queue.add(root);
		
		while(!queue.isEmpty()){
			TreeNode cur = queue.remove();		// 从队头位置移除
			if(cur.left != null){			// 如果有左孩子,加到队尾
				queue.add(cur.left);
				count++;
			}
			if(cur.right != null){		// 如果有右孩子,加到队尾
				queue.add(cur.right);
				count++;
			}
		}
		
		return count;
	}

	/**
	 * 求二叉树的深度(高度) 递归解法: O(n)
	 * (1)如果二叉树为空,二叉树的深度为0 
	 * (2)如果二叉树不为空,二叉树的深度 = max(左子树深度, 右子树深度) + 1
	 */
	public static int getDepthRec(TreeNode root) {
		if (root == null) {
			return 0;
		}

		int leftDepth = getDepthRec(root.left);
		int rightDepth = getDepthRec(root.right);
		return Math.max(leftDepth, rightDepth) + 1;
	}
	
	/**
	 * 求二叉树的深度(高度) 迭代解法: O(n)
	 * 基本思想同LevelOrderTraversal,还是用一个Queue
	 */
	public static int getDepth(TreeNode root) {
		if(root == null){
			return 0;
		}
		
		int depth = 0;							// 深度
		int currentLevelNodes = 1;		// 当前Level,node的数量
		int nextLevelNodes = 0;			// 下一层Level,node的数量
		
		LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
		queue.add(root);
		
		while( !queue.isEmpty() ){
			TreeNode cur = queue.remove();		// 从队头位置移除
			currentLevelNodes--;			// 减少当前Level node的数量
			if(cur.left != null){				// 如果有左孩子,加到队尾
				queue.add(cur.left);
				nextLevelNodes++;			// 并增加下一层Level node的数量
			}
			if(cur.right != null){			// 如果有右孩子,加到队尾
				queue.add(cur.right);
				nextLevelNodes++;
			}
			
			if(currentLevelNodes == 0){ // 说明已经遍历完当前层的所有节点
				depth++;					   // 增加高度
				currentLevelNodes = nextLevelNodes;		// 初始化下一层的遍历
				nextLevelNodes = 0;
			}
		}
		
		return depth;
	}
	
	

	/**
	 * 前序遍历,中序遍历,后序遍历 前序遍历递归解法: 
	 * (1)如果二叉树为空,空操作 
	 * (2)如果二叉树不为空,访问根节点,前序遍历左子树,前序遍历右子树
	 */
	public static void preorderTraversalRec(TreeNode root) {
		if (root == null) {
			return;
		}
		System.out.print(root.val + " ");
		preorderTraversalRec(root.left);
		preorderTraversalRec(root.right);
	}
	
	/**
	 *  前序遍历迭代解法:用一个辅助stack,总是把右孩子放进栈
	 *  http://www.youtube.com/watch?v=uPTCbdHSFg4
	 */
	public static void preorderTraversal(TreeNode root) {
		if(root == null){
			return;
		}
		
		Stack<TreeNode> stack = new Stack<TreeNode>();		// 辅助stack
		stack.push(root);
		
		while( !stack.isEmpty() ){
			TreeNode cur = stack.pop();		// 出栈栈顶元素
			System.out.print(cur.val + " ");
			
			// 关键点:要先压入右孩子,再压入左孩子,这样在出栈时会先打印左孩子再打印右孩子
			if(cur.right != null){
				stack.push(cur.right);
			}
			if(cur.left != null){
				stack.push(cur.left);
			}
		}
	}

	/**
	 * 中序遍历递归解法 
	 * (1)如果二叉树为空,空操作。 
	 * (2)如果二叉树不为空,中序遍历左子树,访问根节点,中序遍历右子树
	 */
	public static void inorderTraversalRec(TreeNode root) {
		if (root == null) {
			return;
		}
		inorderTraversalRec(root.left);
		System.out.print(root.val + " ");
		inorderTraversalRec(root.right);
	}
	
	/**
	 * 中序遍历迭代解法 ,用栈先把根节点的所有左孩子都添加到栈内,
	 * 然后输出栈顶元素,再处理栈顶元素的右子树
	 * http://www.youtube.com/watch?v=50v1sJkjxoc
	 * 
	 * 还有一种方法能不用递归和栈,基于线索二叉树的方法,较麻烦以后补上
	 * http://www.geeksforgeeks.org/inorder-tree-traversal-without-recursion-and-without-stack/
	 */
	public static void inorderTraversal(TreeNode root){
		if(root == null){
			return;
		}
		Stack<TreeNode> stack = new Stack<TreeNode>();
		TreeNode cur = root;
		
		while( true ){
			while(cur != null){		// 先添加一个非空节点所有的左孩子到栈
				stack.push(cur);
				cur = cur.left;
			}
			
			if(stack.isEmpty()){
				break;
			}
				
			// 因为此时已经没有左孩子了,所以输出栈顶元素
			cur = stack.pop();
			System.out.print(cur.val + " ");
			cur = cur.right;	// 准备处理右子树
		}
	}

	/**
	 * 后序遍历递归解法 
	 * (1)如果二叉树为空,空操作 
	 * (2)如果二叉树不为空,后序遍历左子树,后序遍历右子树,访问根节点
	 */
	public static void postorderTraversalRec(TreeNode root) {
		if (root == null) {
			return;
		}
		postorderTraversalRec(root.left);
		postorderTraversalRec(root.right);
		System.out.print(root.val + " ");
	}
	
	/**
	 *  后序遍历迭代解法
	 *  http://www.youtube.com/watch?v=hv-mJUs5mvU
	 *  
	 */
	public static void postorderTraversal(TreeNode root) {
		if (root == null) {
			return;
		}
		
		Stack<TreeNode> s = new Stack<TreeNode>();		// 第一个stack用于添加node和它的左右孩子
		Stack<TreeNode> output = new Stack<TreeNode>();// 第二个stack用于翻转第一个stack输出
		
		s.push(root);
		while( !s.isEmpty() ){		// 确保所有元素都被翻转转移到第二个stack
			TreeNode cur = s.pop();	// 把栈顶元素添加到第二个stack
			output.push(cur);		
			
			if(cur.left != null){		// 把栈顶元素的左孩子和右孩子分别添加入第一个stack
				s.push(cur.left);
			}
			if(cur.right != null){
				s.push(cur.right);
			}
		}
		
		while( !output.isEmpty() ){	// 遍历输出第二个stack,即为后序遍历
			System.out.print(output.pop().val + " ");
		}
	}

	/**
	 * 分层遍历二叉树(按层次从上往下,从左往右)迭代
	 * 相当于广度优先搜索,使用队列实现。队列初始化,将根节点压入队列。当队列不为空,进行如下操作:弹出一个节点
	 * ,访问,若左子节点或右子节点不为空,将其压入队列
	 */
	public static void levelTraversal(TreeNode root) {
		if (root == null) {
			return;
		}
		LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
		queue.push(root);

		while (!queue.isEmpty()) {
			TreeNode cur = queue.removeFirst();
			System.out.print(cur.val + " ");
			if (cur.left != null) {
				queue.add(cur.left);
			}
			if (cur.right != null) {
				queue.add(cur.right);
			}
		}
	}
	
	/**
	 *  分层遍历二叉树(递归)
	 *  很少有人会用递归去做level traversal
	 *  基本思想是用一个大的ArrayList,里面包含了每一层的ArrayList。
	 *  大的ArrayList的size和level有关系
	 *  
	 *  这是我目前见到的最好的递归解法!
	 *  http://discuss.leetcode.com/questions/49/binary-tree-level-order-traversal#answer-container-2543
	 */
	public static void levelTraversalRec(TreeNode root) {
		ArrayList<ArrayList<Integer>> ret = new ArrayList<ArrayList<Integer>>();
		dfs(root, 0, ret);
		System.out.println(ret);
	}
	
	private static void dfs(TreeNode root, int level, ArrayList<ArrayList<Integer>> ret){
		if(root == null){
			return;
		}
		
		// 添加一个新的ArrayList表示新的一层
		if(level >= ret.size()){
			ret.add(new ArrayList<Integer>());
		}
		
		ret.get(level).add(root.val);	// 把节点添加到表示那一层的ArrayList里
		dfs(root.left, level+1, ret);		// 递归处理下一层的左子树和右子树
		dfs(root.right, level+1, ret);
	}
	

	/**
	 * 将二叉查找树变为有序的双向链表 要求不能创建新节点,只调整指针。 
	 * 递归解法:
	 * 参考了http://stackoverflow.com/questions/11511898/converting-a-binary-search-tree-to-doubly-linked-list#answer-11530016
	 * 感觉是最清晰的递归解法,但要注意递归完,root会在链表的中间位置,因此要手动
	 * 把root移到链表头或链表尾
	 */
	public static TreeNode convertBST2DLLRec(TreeNode root) {
		root = convertBST2DLLSubRec(root);
		
		// root会在链表的中间位置,因此要手动把root移到链表头
		while(root.left != null){
			root = root.left;
		}
		return root;
	}
	
	/**
	 *  递归转换BST为双向链表(DLL)
	 */
	public static TreeNode convertBST2DLLSubRec(TreeNode root){
		if(root==null || (root.left==null && root.right==null)){
			return root;
		}
		
		TreeNode tmp = null;
		if(root.left != null){			// 处理左子树
			tmp = convertBST2DLLSubRec(root.left);
			while(tmp.right != null){	// 寻找最右节点
				tmp = tmp.right;
			}
			tmp.right = root;		// 把左子树处理后结果和root连接
			root.left = tmp;
		}
		if(root.right != null){		// 处理右子树
			tmp = convertBST2DLLSubRec(root.right);
			while(tmp.left != null){	// 寻找最左节点
				tmp = tmp.left;
			}
			tmp.left = root;		// 把右子树处理后结果和root连接
			root.right = tmp;
		}
		return root;
	}
	
	/**
	 * 将二叉查找树变为有序的双向链表 迭代解法
//	 * 类似inorder traversal的做法
	 */
	public static TreeNode convertBST2DLL(TreeNode root) {
		if(root == null){
			return null;
		}
		Stack<TreeNode> stack = new Stack<TreeNode>();
		TreeNode cur = root;		// 指向当前处理节点
		TreeNode old = null;			// 指向前一个处理的节点
		TreeNode head = null;		// 链表头
		
		while( true ){
			while(cur != null){		// 先添加一个非空节点所有的左孩子到栈
				stack.push(cur);
				cur = cur.left;
			}
			
			if(stack.isEmpty()){
				break;
			}
				
			// 因为此时已经没有左孩子了,所以输出栈顶元素
			cur = stack.pop();
			if(old != null){
				old.right = cur;
			}
			if(head == null){		// /第一个节点为双向链表头节点
				head = cur;
			}
			
			old = cur;			// 更新old
			cur = cur.right;	// 准备处理右子树
		}
		
		return head;
	}

	/**
	 * 求二叉树第K层的节点个数   递归解法: 
	 * (1)如果二叉树为空或者k<1返回0
	 * (2)如果二叉树不为空并且k==1,返回1
	 * (3)如果二叉树不为空且k>1,返回root左子树中k-1层的节点个数与root右子树k-1层节点个数之和
	 * 
	 * 求以root为根的k层节点数目 等价于 求以root左孩子为根的k-1层(因为少了root那一层)节点数目 加上
	 * 以root右孩子为根的k-1层(因为少了root那一层)节点数目
	 * 
	 * 所以遇到树,先把它拆成左子树和右子树,把问题降解
	 * 
	 */
	public static int getNodeNumKthLevelRec(TreeNode root, int k) {
		if (root == null || k < 1) {
			return 0;
		}

		if (k == 1) {
			return 1;
		}
		int numLeft = getNodeNumKthLevelRec(root.left, k - 1); 		// 求root左子树的k-1层节点数
		int numRight = getNodeNumKthLevelRec(root.right, k - 1); 	// 求root右子树的k-1层节点数
		return numLeft + numRight;
	}
	
	/**
	 *  求二叉树第K层的节点个数   迭代解法: 
	 *  同getDepth的迭代解法
	 */
	public static int getNodeNumKthLevel(TreeNode root, int k){
		if(root == null){
			return 0;
		}
		Queue<TreeNode> queue = new LinkedList<TreeNode>();
		queue.add(root);
		
		int i = 1;
		int currentLevelNodes = 1;		// 当前Level,node的数量
		int nextLevelNodes = 0;			// 下一层Level,node的数量
		
		while( !queue.isEmpty() && i<k){
			TreeNode cur = queue.remove();		// 从队头位置移除
			currentLevelNodes--;			// 减少当前Level node的数量
			if(cur.left != null){				// 如果有左孩子,加到队尾
				queue.add(cur.left);
				nextLevelNodes++;			// 并增加下一层Level node的数量
			}
			if(cur.right != null){			// 如果有右孩子,加到队尾
				queue.add(cur.right);
				nextLevelNodes++;
			}
			
			if(currentLevelNodes == 0){ // 说明已经遍历完当前层的所有节点
				currentLevelNodes = nextLevelNodes;		// 初始化下一层的遍历
				nextLevelNodes = 0;
				i++;			// 进入到下一层
			}
		}
		
		return currentLevelNodes;
	}

	/**
	 * 求二叉树中叶子节点的个数(递归)
	 */
	public static int getNodeNumLeafRec(TreeNode root) {
		// 当root不存在,返回空
		if (root == null) {
			return 0;
		}

		// 当为叶子节点时返回1
		if (root.left == null && root.right == null) {
			return 1;
		}

		// 把一个树拆成左子树和右子树之和,原理同上一题
		return getNodeNumLeafRec(root.left) + getNodeNumLeafRec(root.right);
	}
	
	/**
	 *  求二叉树中叶子节点的个数(迭代)
	 *  还是基于Level order traversal
	 */
	public static int getNodeNumLeaf(TreeNode root) {
		if(root == null){
			return 0;
		}
		Queue<TreeNode> queue = new LinkedList<TreeNode>();
		queue.add(root);
		
		int leafNodes = 0;				// 记录上一个Level,node的数量
		
		while( !queue.isEmpty() ){
			TreeNode cur = queue.remove();		// 从队头位置移除
			if(cur.left != null){				// 如果有左孩子,加到队尾
				queue.add(cur.left);
			}
			if(cur.right != null){				// 如果有右孩子,加到队尾
				queue.add(cur.right);
			}
			if(cur.left==null && cur.right==null){			// 叶子节点
				leafNodes++;
			}
		}
		
		return leafNodes;
	}

	/**
	 * 判断两棵二叉树是否相同的树。
	 * 递归解法: 
	 * (1)如果两棵二叉树都为空,返回真
	 * (2)如果两棵二叉树一棵为空,另一棵不为空,返回假 
	 * (3)如果两棵二叉树都不为空,如果对应的左子树和右子树都同构返回真,其他返回假
	 */
	public static boolean isSameRec(TreeNode r1, TreeNode r2) {
		// 如果两棵二叉树都为空,返回真
		if (r1 == null && r2 == null) {
			return true;
		}
		// 如果两棵二叉树一棵为空,另一棵不为空,返回假
		else if (r1 == null || r2 == null) {
			return false;
		}

		if(r1.val != r2.val){
			return false;
		}
		boolean leftRes = isSameRec(r1.left, r2.left); 		// 比较对应左子树
		boolean rightRes = isSameRec(r1.right, r2.right); // 比较对应右子树
		return leftRes && rightRes;
	}
	
	/**
	 * 判断两棵二叉树是否相同的树(迭代)
	 * 遍历一遍即可,这里用preorder
	 */
	public static boolean isSame(TreeNode r1, TreeNode r2) {
		// 如果两个树都是空树,则返回true
		if(r1==null && r2==null){
			return true;
		}
		
		// 如果有一棵树是空树,另一颗不是,则返回false
		if(r1==null || r2==null){
			return false;
		}
		
		Stack<TreeNode> s1 = new Stack<TreeNode>();
		Stack<TreeNode> s2 = new Stack<TreeNode>();
		
		s1.push(r1);
		s2.push(r2);
		
		while(!s1.isEmpty() && !s2.isEmpty()){
			TreeNode n1 = s1.pop();
			TreeNode n2 = s2.pop();
			if(n1==null && n2==null){
				continue;
			}else if(n1!=null && n2!=null && n1.val==n2.val){
				s1.push(n1.right);
				s1.push(n1.left);
				s2.push(n2.right);
				s2.push(n2.left);
			}else{
				return false;
			}
		}
		return true;
	}

	/**
	 * 判断二叉树是不是平衡二叉树 递归解法: 
	 * (1)如果二叉树为空,返回真
	 * (2)如果二叉树不为空,如果左子树和右子树都是AVL树并且左子树和右子树高度相差不大于1,返回真,其他返回假
	 */
	public static boolean isAVLRec(TreeNode root) {
		if(root == null){			// 如果二叉树为空,返回真
			return true;
		}
		
		// 如果左子树和右子树高度相差大于1,则非平衡二叉树, getDepthRec()是前面实现过的求树高度的方法
		if(Math.abs(getDepthRec(root.left) - getDepthRec(root.right)) > 1){
			return false;
		}
		
		// 递归判断左子树和右子树是否为平衡二叉树
		return isAVLRec(root.left) && isAVLRec(root.right);
	}
	

	/**
	 * 求二叉树的镜像 递归解法: 
	 * (1)如果二叉树为空,返回空
	 * (2)如果二叉树不为空,求左子树和右子树的镜像,然后交换左子树和右子树
	 */
	// 1. 破坏原来的树,把原来的树改成其镜像
	public static TreeNode mirrorRec(TreeNode root) {
		if (root == null) {
			return null;
		}

		TreeNode left = mirrorRec(root.left);
		TreeNode right = mirrorRec(root.right);

		root.left = right;
		root.right = left;
		return root;
	}
	
	// 2. 不能破坏原来的树,返回一个新的镜像树
	public static TreeNode mirrorCopyRec(TreeNode root){
		if(root == null){
			return null;
		}
		
		TreeNode newNode = new TreeNode(root.val);
		newNode.left = mirrorCopyRec(root.right);
		newNode.right = mirrorCopyRec(root.left);
		
		return newNode;
	}
	
	// 3. 判断两个树是否互相镜像
	public static boolean isMirrorRec(TreeNode r1, TreeNode r2){
		// 如果两个树都是空树,则返回true
		if(r1==null && r2==null){
			return true;
		}
		
		// 如果有一棵树是空树,另一颗不是,则返回false
		if(r1==null || r2==null){
			return false;
		}
		
		// 如果两个树都非空树,则先比较根节点
		if(r1.val != r2.val){
			return false;
		}
		
		// 递归比较r1的左子树的镜像是不是r2右子树 和 
		// r1的右子树的镜像是不是r2左子树
		return isMirrorRec(r1.left, r2.right) && isMirrorRec(r1.right, r2.left);
	}
	
	// 1. 破坏原来的树,把原来的树改成其镜像
	public static void mirror(TreeNode root) {
		if(root == null){
			return;
		}
		
		Stack<TreeNode> stack = new Stack<TreeNode>();
		stack.push(root);
		while( !stack.isEmpty() ){
			TreeNode cur = stack.pop();
			
			// 交换左右孩子
			TreeNode tmp = cur.right;
			cur.right = cur.left;
			cur.left = tmp;
			
			if(cur.right != null){
				stack.push(cur.right);
			}
			if(cur.left != null){
				stack.push(cur.left);
			}
		}
	}
	
	// 2. 不能破坏原来的树,返回一个新的镜像树
	public static TreeNode mirrorCopy(TreeNode root){
		if(root == null){
			return null;
		}
		
		Stack<TreeNode> stack = new Stack<TreeNode>();
		Stack<TreeNode> newStack = new Stack<TreeNode>();
		stack.push(root);
		TreeNode newRoot = new TreeNode(root.val);
		newStack.push(newRoot);
		
		while( !stack.isEmpty() ){
			TreeNode cur = stack.pop();
			TreeNode newCur = newStack.pop();
			
			if(cur.right != null){
				stack.push(cur.right);
				newCur.left = new TreeNode(cur.right.val);
				newStack.push(newCur.left);
			}
			if(cur.left != null){
				stack.push(cur.left);
				newCur.right = new TreeNode(cur.left.val);
				newStack.push(newCur.right);
			}
		}
		
		return newRoot;
	}
	

	/**
	 * 求二叉树中两个节点的最低公共祖先节点 
	 * 递归解法: 
	 * (1)如果两个节点分别在根节点的左子树和右子树,则返回根节点
	 * (2)如果两个节点都在左子树,则递归处理左子树;如果两个节点都在右子树,则递归处理右子树
	 */
	public static TreeNode getLastCommonParentRec(TreeNode root, TreeNode n1, TreeNode n2) {
		if (findNodeRec(root.left, n1)) {				// 如果n1在树的左子树
			if (findNodeRec(root.right, n2)) { 		// 如果n2在树的右子树
				return root; 								// 返回根节点
			} else { 			// 如果n2也在树的左子树
				return getLastCommonParentRec(root.left, n1, n2); // 递归处理
			}
		} else { 				// 如果n1在树的右子树
			if (findNodeRec(root.left, n2)) { 			// 如果n2在左子树
				return root;
			} else {				 // 如果n2在右子树
				return getLastCommonParentRec(root.right, n1, n2); // 递归处理
			}
		}
	}

	// 帮助方法,递归判断一个点是否在树里
	private static boolean findNodeRec(TreeNode root, TreeNode node) {
		if (root == null || node == null) {
			return false;
		}
		if (root == node) {
			return true;
		}

		// 先尝试在左子树中查找
		boolean found = findNodeRec(root.left, node);
		if (!found) { 		// 如果查找不到,再在右子树中查找
			found = findNodeRec(root.right, node);
		}
		return found;
	}
	
	// 求二叉树中两个节点的最低公共祖先节点 (更加简洁版的递归)
	public static TreeNode getLastCommonParentRec2(TreeNode root, TreeNode n1, TreeNode n2) {
		if(root == null){
			return null;
		}
		
		// 如果有一个match,则说明当前node就是要找的最低公共祖先
		if(root.equals(n1) || root.equals(n2)){
			return root;
		}
		TreeNode commonInLeft = getLastCommonParentRec2(root.left, n1, n2);
		TreeNode commonInRight = getLastCommonParentRec2(root.right, n1, n2);
		
		// 如果一个左子树找到,一个在右子树找到,则说明root是唯一可能的最低公共祖先
		if(commonInLeft!=null && commonInRight!=null){
			return root;
		}
		
		// 其他情况是要不然在左子树要不然在右子树
		if(commonInLeft != null){
			return commonInLeft;
		}
		
		return commonInRight;
	}

	/**
	 * 非递归解法: 
	 * 先求从根节点到两个节点的路径,然后再比较对应路径的节点就行,最后一个相同的节点也就是他们在二叉树中的最低公共祖先节点
	 */
	public static TreeNode getLastCommonParent(TreeNode root, TreeNode n1, TreeNode n2) {
		if (root == null || n1 == null || n2 == null) {
			return null;
		}

		ArrayList<TreeNode> p1 = new ArrayList<TreeNode>();
		boolean res1 = getNodePath(root, n1, p1);
		ArrayList<TreeNode> p2 = new ArrayList<TreeNode>();
		boolean res2 = getNodePath(root, n2, p2);

		if (!res1 || !res2) {
			return null;
		}

		TreeNode last = null;
		Iterator<TreeNode> iter1 = p1.iterator();
		Iterator<TreeNode> iter2 = p2.iterator();

		while (iter1.hasNext() && iter2.hasNext()) {
			TreeNode tmp1 = iter1.next();
			TreeNode tmp2 = iter2.next();
			if (tmp1 == tmp2) {
				last = tmp1;
			} else { // 直到遇到非公共节点
				break;
			}
		}
		return last;
	}

	// 把从根节点到node路径上所有的点都添加到path中
	private static boolean getNodePath(TreeNode root, TreeNode node, ArrayList<TreeNode> path) {
		if (root == null) {
			return false;
		}
		
		path.add(root);		// 把这个节点加到路径中
		if (root == node) {
			return true;
		}

		boolean found = false;
		found = getNodePath(root.left, node, path); // 先在左子树中找
		
		if (!found) { 				// 如果没找到,再在右子树找
			found = getNodePath(root.right, node, path);
		}
		if (!found) { 				// 如果实在没找到证明这个节点不在路径中,说明刚才添加进去的不是路径上的节点,删掉!
			path.remove(root);	
		}

		return found;
	}

	/**
	 * 求二叉树中节点的最大距离 即二叉树中相距最远的两个节点之间的距离。 (distance / diameter)
	 * 递归解法: 
	 * (1)如果二叉树为空,返回0,同时记录左子树和右子树的深度,都为0
	 * (2)如果二叉树不为空,最大距离要么是左子树中的最大距离,要么是右子树中的最大距离,
	 * 要么是左子树节点中到根节点的最大距离+右子树节点中到根节点的最大距离,
	 * 同时记录左子树和右子树节点中到根节点的最大距离。
	 * 
	 * http://www.cnblogs.com/miloyip/archive/2010/02/25/1673114.html
	 * 
	 * 计算一个二叉树的最大距离有两个情况:

		情况A: 路径经过左子树的最深节点,通过根节点,再到右子树的最深节点。
		情况B: 路径不穿过根节点,而是左子树或右子树的最大距离路径,取其大者。
		只需要计算这两个情况的路径距离,并取其大者,就是该二叉树的最大距离
	 */
	public static Result getMaxDistanceRec(TreeNode root){
		if(root == null){
			Result empty = new Result(0, -1);		// 目的是让调用方 +1 后,把当前的不存在的 (NULL) 子树当成最大深度为 0
			return empty;
		}
		
		// 计算出左右子树分别最大距离
		Result lmd = getMaxDistanceRec(root.left);
		Result rmd = getMaxDistanceRec(root.right);
		
		Result res = new Result();
		res.maxDepth = Math.max(lmd.maxDepth, rmd.maxDepth) + 1;		// 当前最大深度
		// 取情况A和情况B中较大值
		res.maxDistance = Math.max( lmd.maxDepth+rmd.maxDepth, Math.max(lmd.maxDistance, rmd.maxDistance) );
		return res;
	}
	
	private static class Result{
		int maxDistance;
		int maxDepth;
		public Result() {
		}

		public Result(int maxDistance, int maxDepth) {
			this.maxDistance = maxDistance;
			this.maxDepth = maxDepth;
		}
	}
	
	/**
	 * 13. 由前序遍历序列和中序遍历序列重建二叉树(递归)
	 * 感觉这篇是讲的最为清晰的:
	 * http://crackinterviewtoday.wordpress.com/2010/03/15/rebuild-a-binary-tree-from-inorder-and-preorder-traversals/
	 * 文中还提到一种避免开额外空间的方法,等下次补上
	 */
	public static TreeNode rebuildBinaryTreeRec(List<Integer> preOrder, List<Integer> inOrder){
		TreeNode root = null;
        List<Integer> leftPreOrder;
        List<Integer> rightPreOrder;
        List<Integer> leftInorder;
        List<Integer> rightInorder;
        int inorderPos;
        int preorderPos;
 
        if ((preOrder.size() != 0) && (inOrder.size() != 0))
        {
        	// 把preorder的第一个元素作为root
            root = new TreeNode(preOrder.get(0));
 
            //  Based upon the current node data seperate the traversals into leftPreorder, rightPreorder,
            //  leftInorder, rightInorder lists
            // 因为知道root节点了,所以根据root节点位置,把preorder,inorder分别划分为 root左侧 和 右侧 的两个子区间
            inorderPos = inOrder.indexOf(preOrder.get(0));		// inorder序列的分割点
            leftInorder = inOrder.subList(0, inorderPos);
            rightInorder = inOrder.subList(inorderPos + 1, inOrder.size());
 
            preorderPos = leftInorder.size();							// preorder序列的分割点
            leftPreOrder = preOrder.subList(1, preorderPos + 1);
            rightPreOrder = preOrder.subList(preorderPos + 1, preOrder.size());
 
            root.left = rebuildBinaryTreeRec(leftPreOrder, leftInorder);		// root的左子树就是preorder和inorder的左侧区间而形成的树
            root.right = rebuildBinaryTreeRec(rightPreOrder, rightInorder);	// root的右子树就是preorder和inorder的右侧区间而形成的树
        }
 
        return root;
	}
	
	/**
	 	14.  判断二叉树是不是完全二叉树(迭代)
	  	若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,
	  	第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。
		有如下算法,按层次(从上到下,从左到右)遍历二叉树,当遇到一个节点的左子树为空时,
		则该节点右子树必须为空,且后面遍历的节点左右子树都必须为空,否则不是完全二叉树。
	 */
	public static boolean isCompleteBinaryTree(TreeNode root){
		if(root == null){
			return false;
		}
		
		Queue<TreeNode> queue = new LinkedList<TreeNode>();
		queue.add(root);
		boolean mustHaveNoChild = false;
		boolean result = true;
		
		while( !queue.isEmpty() ){
			TreeNode cur = queue.remove();
			if(mustHaveNoChild){	// 已经出现了有空子树的节点了,后面出现的必须为叶节点(左右子树都为空)  
				if(cur.left!=null || cur.right!=null){
					result = false;
					break;
				}
			} else {
				if(cur.left!=null && cur.right!=null){		// 如果左子树和右子树都非空,则继续遍历
					queue.add(cur.left);
					queue.add(cur.right);
				}else if(cur.left!=null && cur.right==null){	// 如果左子树非空但右子树为空,说明已经出现空节点,之后必须都为空子树
					mustHaveNoChild = true;
					queue.add(cur.left);
				}else if(cur.left==null && cur.right!=null){	// 如果左子树为空但右子树非空,说明这棵树已经不是完全二叉完全树!
					result = false;
					break;
				}else{			// 如果左右子树都为空,则后面的必须也都为空子树
					mustHaveNoChild = true;
				}
			}
		}
		return result;
	}
	
	/**
	 * 14.  判断二叉树是不是完全二叉树(递归)
	 * http://stackoverflow.com/questions/1442674/how-to-determine-whether-a-binary-tree-is-complete
	 * 
	 */
	public static boolean isCompleteBinaryTreeRec(TreeNode root){
//		Pair notComplete = new Pair(-1, false);
//		return !isCompleteBinaryTreeSubRec(root).equalsTo(notComplete);
		return isCompleteBinaryTreeSubRec(root).height != -1;
	}
	
	// 递归判断是否满树(完美)
	public static boolean isPerfectBinaryTreeRec(TreeNode root){
		return isCompleteBinaryTreeSubRec(root).isFull;
	}
	
	// 递归,要创建一个Pair class来保存树的高度和是否已满的信息
	public static Pair isCompleteBinaryTreeSubRec(TreeNode root){
		if(root == null){
			return new Pair(0, true);
		}
		
		Pair left = isCompleteBinaryTreeSubRec(root.left);
		Pair right = isCompleteBinaryTreeSubRec(root.right);
		
		// 左树满节点,而且左右树相同高度,则是唯一可能形成满树(若右树也是满节点)的情况
		if(left.isFull && left.height==right.height){
			return new Pair(1+left.height, right.isFull);
		}
		
		// 左树非满,但右树是满节点,且左树高度比右树高一
		// 注意到如果其左树为非完全树,则它的高度已经被设置成-1,
		// 因此不可能满足第二个条件!
		if(right.isFull && left.height==right.height+1){
			return new Pair(1+left.height, false);
		}
		
		// 其他情况都是非完全树,直接设置高度为-1
		return new Pair(-1, false);
	}
	
	private static class Pair{
		int height;				// 树的高度
		boolean isFull;		// 是否是个满树

		public Pair(int height, boolean isFull) {
			this.height = height;
			this.isFull = isFull;
		}

		public boolean equalsTo(Pair obj){
			return this.height==obj.height && this.isFull==obj.isFull;
		}
	}
	
}
</span>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值