梵天的读书笔记

技术类读书笔记

Pandas基本用法

Pandas 数据结构 Series 是一种一维数组,和 NumPy 里的数组很相似。事实上,Series 基本上就是基于 NumPy 的数组对象来的。和 NumPy 的数组不同,Series 能为数据自定义标签,也就是索引(index),然后通过索引来访问数组中的数据。 创建一个 Serie...

2018-12-20 08:45:06

阅读数 66

评论数 0

pip 安装过程的坑

pip 安装过程中如果出现 UnicodeDecodeError: 'utf-8' codec can't decode 错误 说到底还是编码的问题,因为windows下dos的默认编码是gbk936,我们可以将dos的代码页进行更改,更改命令如下: chcp 65001  //换成65001...

2018-07-12 10:08:03

阅读数 522

评论数 0

在win10自带Ubuntu16下搭建环境使用CLion2018进行C++开发

开发Linux下的C++应用,正好win10下有自带Ubuntu,又想用图形界面进行编码,选择Linux下的CLion,于是搭建环境如下: 1. 安装Win10下的Ubuntu 控制面板--程序--启动或关闭windows功能--适用于Linux的Windows子系统。 设置--更新和安全-...

2018-06-26 08:52:36

阅读数 1380

评论数 0

微信小程序--入门笔记

1. 项目结构文件夹下的文件名要保持一致,但可以不同于文件夹。在app.json的pages里面设置新的page,IDE会自动生成该page目录即相关文件在app.json的pages里面第一个page默认为启动页面2. 页面组织结构[page_name].js:页面逻辑文件,用于创建页面对象,以...

2018-04-26 19:33:32

阅读数 82

评论数 0

用Flask构建站点基本框架和技术点

Flask作为Python在WEB建站的框架,比Djiango显得小巧灵活,使用也更加自由,笔者作为一个比较自由的使用者,偏好于Flask的适用,就此将其建站基本框架结构和其中部分技术点做简略描述。IDE:PyCharm数据库:MySQL1. 需要依赖的包Flask(Jinja, Werkzeug...

2018-04-25 16:16:03

阅读数 677

评论数 0

git命令大全

本篇是转发的别人的,原文地址:http://www.ruanyifeng.com/blog/2015/12/git-cheat-sheet.html一般来说,日常使用只要记住下图6个命令,就可以了。但是熟练使用,恐怕要记住60~100个命令。下面是我整理的常用 Git 命令清单。几个专用名词的译名...

2018-04-10 14:08:56

阅读数 60

评论数 0

Python数据分析----数据预处理

数据预处理主要包括:数据清洗、数据集成、数据变换和数据规约。1. 数据清洗数据清洗主要是删除原始数据中的无关数据、重复数据,平滑噪音数据,筛选掉和挖掘主题无关的数据,处理缺失值和异常值。1.1. 缺失值处理处理缺失值数据方法有三类:删除记录、数据插补和不处理。其中数据插补方法如下:1)均值/中数值...

2018-04-04 15:36:23

阅读数 1122

评论数 0

Python数据分析----数据探索

1. 数据质量分析数据质量分析的主要任务是检查原始数据中是否存在脏数据:缺失值、异常值、不一致值、重复数据和含有特殊符号的数据。1.1. 缺失分析1)缺失的原因:有些信息无法获取或获取的代价过大有些信息是被遗漏属性值不存在2)缺失的影响数据挖掘建模将丢失大量有用信息数据挖掘模型所表现出的不确定性更...

2018-04-04 09:23:24

阅读数 593

评论数 0

Keras读书笔记----其他重要模块

1. 目标函数Objectives目标函数,或称损失函数,是编译一个模型必须的两个参数之一可以通过传递预定义目标函数名字指定目标函数,也可以传递一个Theano/TensroFlow的符号函数作为目标函数,该函数对每个数据点应该只返回一个标量值,并以下列两个参数为参数:y_true:真实的数据标签...

2018-03-30 21:38:33

阅读数 1102

评论数 0

Keras读书笔记----预处理

1. 序列预处理1.1. 填充序列pad_sequences将长为 nb_samples 的序列(标量序列)转化为形如 (nb_samples,nb_timesteps) 2D numpy array。如果提供了参数 maxlen , nb_timesteps=maxlen ,否则其值为最长序列的...

2018-03-30 20:53:36

阅读数 564

评论数 0

Keras读书笔记----激活层、规范层、噪音层、包装器

1. 高级激活层1.1. LeakyReLU层LeakyRelU是修正线性单元( Rectified Linear Unit, ReLU)的特殊版本,当不激活时, LeakyReLU仍然会有非零输出值,从而获得一个小梯度,避免ReLU可能出现的神经元“死亡”现象。keras.layers.adva...

2018-03-30 11:09:02

阅读数 1179

评论数 0

Keras读书笔记----递归网络层

1. 递归层Recurrent1.1. Recurrent层这是递归层的抽象类,请不要在模型中直接应用该层,所有的递归层(LSTM , GRU , SimpleRNN )都服从本层的性质,并接受本层指定的所有关键字参数。keras.layers.recurrent.Recurrent(weight...

2018-03-30 10:31:02

阅读数 138

评论数 0

Keras读书笔记----卷积层、池化层

1. 卷积层1.1. Convolution1D层一维卷积层,用以在一维输入信号上进行邻域滤波。当使用该层作为首层时,需要提供关键字参数 input_dim 或 input_shape 。keras.layers.convolutional.Convolution1D(nb_filter, fil...

2018-03-29 18:10:58

阅读数 1656

评论数 0

Keras读书笔记----网络层(Core常用层)

1. 所有层共有方法layer.get_weights() :返回层的权重( numpy array)layer.set_weights(weights) :从numpy array中将权重加载到该层中,要求numpy array的形状与get_weights的形状相同layer.get_conf...

2018-03-29 11:33:10

阅读数 2007

评论数 0

Keras读书笔记----模型

1. 模型共有方法1.1. summary打印出模型概况1.2. get_config返回包含模型配置信息的Python字典。模型也可以从它的config信息中重构回去:Model.from_config(config)1.3. get_weights  set_weights返回模型权重张量的列...

2018-03-28 22:38:46

阅读数 229

评论数 0

Matplotlib使用笔记----中文字体显示

1. 查询matplotlib系统中文字体from matplotlib.font_manager import fontManager import os fonts = [font.name for font in fontManager.ttflist if os.path.exist...

2018-03-26 11:21:32

阅读数 519

评论数 0

Matplotlib使用笔记----图像及布局

1. figurefigure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True)num:图像编号或名称,数字为编号 ,字符串为名称figsize:指定figure的宽和高,单位为英寸;dp...

2018-03-26 10:49:37

阅读数 210

评论数 0

scikit-learn笔记----对数据分类

1. 决策树实现基本的分类from sklearn import datasets X, y = datasets.make_classification(n_samples=1000, n_features=3, n_redundant=0) from sklearn.tree import D...

2018-03-21 16:57:36

阅读数 413

评论数 0

scikit-learn笔记----使用距离向量构建模型

1. KMeans 对数据聚类from sklearn.datasets import make_blobs blobs, classes = make_blobs(500, centers=3) from sklearn.cluster import KMeans kmeans = KMean...

2018-03-21 10:59:06

阅读数 332

评论数 0

scikit-learn笔记----处理线性模型

1. 线性回归模型from sklearn import datasets from sklearn.linear_model import LinearRegression boston = datasets.load_boston() # LinearRegression(copy_X=Tr...

2018-03-20 22:16:36

阅读数 223

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭