你的sql该优化了

文章目录

其他文章:
数据库基础知识.
SQL——基础语句练习.

  • 结合当前常见的一些场景,阐述了一些关于优化SQL的建议

1.查询SQL尽量不要使用select * ,而是select具体字段

  • 反例

    select * from employee;
    
  • 正例

    select id,name from employee;
    
  • 理由:

    • 只取需要的字段,节省资源、减少网络开销
    • select * 进行查询的时候,很可能就不会使用到覆盖索引了,就会造成回表查询

2.如果知道查询结果只有一条,或者只要最大/最小一条记录,建议用limit 1

  • 反例

    select id,name from employee where name='jar';
    
  • 正例

    select id,name from employ where name='jar'limit 1;
    
  • 理由:

    • 只要找到了对应的一条记录,就不会继续向下扫描
    • 如果name为唯一索引,就没必要添加。如果一个语句本身可以预知不用全表扫描,就没有limit,性能差别并不大

3.尽量避免在where子句中使用or来连接条件

  • 反例

    select * from user where userid=1 or age=18
    
  • 正例

    //使用union all
    select * from user where userid=1
    union all
    select * from user where age=18
    
  • 理由:

    • 使用or可能会使索引失效,从而全表扫描

    ​ 对于or+没有索引的age这种情况,加上它走了userId的索引,但是走到age查询条件时,还需要全表扫描,即三步:全表扫描+索引扫描+合并。

    ​ 如果它一开始就走全表扫描,直接扫一遍就完事

    ​ mysql是有优化器的,处于效率与成本考虑,遇到or条件,索引可能失效

4.优化limit分页

我们日常做分页需求的时候,一般会使用limit实现,当偏移量特别大的时候,查询效率会变低

  • 反例

    select id,name,age from employee limit 10000,10
    
  • 正例

    //方案一:返回上次查询的最大记录(偏移量)
    select id,name from employee where id>10000 limit 10
    //方案二:order by + 索引
    select id,name from employee order by id limit 1000,10    
    //方案三:在业务运行的情况下限制页数    
    
  • 理由:

    • 当偏移量最大的时候,查询效率就会很低,因为Mysql并非是跳过偏移量直接去取后面的数据,而是先把偏移量+要取的条数,然后再把前面偏移量这一段数据抛弃再返回
    • 如果使用优化方案一,返回上次最大查询记录(偏移量),这样可以跳过偏移量,效率提高不少
    • 方案二使用prder by+索引,也是可以提高查询效率的

5.优化like语句

like可能导致索引失效

  • 反例

    select userId,name from user where userId like '%123';
    
  • 正例

    select userId,name from user where userId like '123%'
    
  • 理由:

6.使用where条件限定要查询的数据,避免返回多余的行

当查询某个用户是否为会员

  • 反例

    List<Long> userIds = sqlMap.queryList("select userId from user where isVip=1");
    boolean isVip = userIds.contains(userId);
    
  • 正例

    Long userId = sqlMap.queryObject("select userId from user where userId='userId' and isVip='1'");
    boolean isVip = userId!=null;
        
    
  • 理由:

    • 需要什么数据,就去查什么数据,避免返回不必要的数据,节省开销

7.尽量避免在索引列上使用mysql的内置函数

查询最近七天内登陆过的用户(假设loginTime 加了索引)

  • 反例

    select userId,loginTime from loginuser where Date_ADD(loginTime,Interval 7 DAT)>=now();
    
  • 正例

    explain select userId,loginTime from loginuser where loginTime >=Date_ADD(NOW(),INTERVAL -7 DAY);
    
  • 理由:

    • 索引列上使用mysql的内置函数,索引失效
    • 如果索引列不加内置函数,索引还是会走的

8.尽量避免在where子句中对字段进行表达式操作,会导致系统放弃使用索引而进行全表扫描

  • 反例

    select * from user where age-1=10;
    
  • 正例

    select * from user where age=11;
    
  • 理由:

    • 虽然age加了索引,但是运行导致索引直接迷路

9.Inner join、left join、right join,优先使用Inner join,如果是left join,左边表结果尽量少

  • Inner join 内连接,在两张表进行连接查询时,只保留两张表中完全匹配的结果集
  • left join 在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的结果
  • right join 在两张表进行连接查询的时候,会返回右表所有的行,即使在左表中没有匹配的记录

都满足sql需求的前提下,推荐优先使用Inner join(内连接),如果使用left join,左边表数据结果尽量小,有条件的尽量放到左边处理

  • 反例

    select * from tab1 t1 left tab2 t2 on t1.size=te.size where ti.id>2;
    
  • 正例

    select * from (select * from table where id>2)t1 left join tab2 te on ti.size=t2.size;
    
  • 理由:

    • 如果inner join是等值连接,或许返回的行数比较少,所以性能相对好一些。
    • 同理使用了左连接,左边表数据结果尽量少,条件尽量放到左边处理,意味着返回的行数比较少。

10.尽量避免在where子句中使用!=或<>操作符,否则引擎将放弃使用索引而进行全表扫描

  • 反例

    select age,name from user where age<>18;
    
  • 正例

    //可以考虑分开两条sql写
    
  • 理由:

    • 使用!=和<>很可能会导致索引失效

11.使用联合索引时,需要注意索引列的顺序,一般最新最左匹配原则

表结构:(有一个联合索引idx_userid_age,userId在前,age在后)

  • 反例

    select * from user where age=10;
    
  • 正例

    //符合最左匹配原则
    select * from user where userid =10 and age =10;
    //符合最左匹配原则
    select * from user where userid =10;
    
  • 理由:

    • 当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)这三个索引,这就是最左匹配原则
    • 联合索引不满足最左原则,索引一般会失效,这和Mysql优化器有关

12.对查询进行优化,考虑在where即order by涉及的列上建立索引,尽量避免全表扫描

  • 反例

    select * from user where address ='深圳' order by age;
    
  • 正例

    //添加索引
    alter table user add index idx_address_age (address,age) 
    

13.如果插入数据过多,考虑批量插入

  • 反例

    for(User u:list){
        INSERT into user(name,age) values(#name#,#age#)
    }
    
  • 正例

    //一次500批量插入,分批进行
    insert into user(name,age) values
    <foreach collection="list" item="item" index="index" separator=",">
        (#{item.name},#{item.age})
    </foreach>
    
  • 理由:

    • 批量插入性能更好,更加节省时间

14.适当的时候,使用覆盖索引

覆盖索引能够使你的SQL语句不需要回表,仅仅访问索引就能得到所有的数据,提高了查询效率

  • 反例

    //like模糊查询,不走索引
    select * from user where userid like '%123%'
    
  • 正例

    //id为主键,那么为普通索引,即覆盖索引登场
    select id,name from user where userid like '%123%'
    

15.慎用distinct关键字

distinct关键字一般用来过滤重复记录,以返回不重复的记录。在查询一个字段或者很少字段的情况下使用时,会给查询带来优化效果,但是在字段很多的时候使用会大大降低查询效率

  • 反例

    select DISTINCT * from user;
    
  • 正例

    select DISTINCT name from user;
    
  • 理由:

    • 带distinct的语句cpu时间和占用时间都高于不带distinct的语句,当查询很多字段时,数据库引擎会对数据进行比较,过滤掉重复数据,但是这个比较、过滤的过程会占用系统资源、cpu时间

16.删除冗余和重复索引

  • 反例

    KEY 'idx_userId'('userId')
    KEY 'idx_userId_age'('userId','age')
    
  • 正例

    //删除userId索引,因为索引(A,B)相当于创建了(A)和(A,B)
    
  • 理由:

    • 重复索引需要维护,并且优化器在优化查询的时候也需要逐个地进行考虑,这会影响性能

17.如果数据量大,建议优化修改/删除语句

避免同时修改或删除过多数据,因为会造成CPU利用率过高,从而影响别人对于数据库的访问

  • 反例

    //一次删除10万或者100万+?
    delete from user where id <100000;
    //或者采用单一循环操作,效率低,时间漫长
    for(User user:list){
       delete from user; 
    }
    
  • 正例

    //分批进行删除,如每次500
    delete user where id<500
    delete product where id>=500 and id<1000
  • 理由:

    • 一次性删除太多数据,可能会有Lock wait timeout exceed的错误,所以建议分批操作

18.where子句中考虑使用默认值代替null

  • 反例

    select * from user where age is not null;
    
  • 正例

    //设置0为默认值
    select * from user where age>0;
    
  • 理由:

    • 并不是使用了is null或者is not null 就不走索引了,这个mysql的版本以及查询成本有关

    • 如果把null值,换成默认值,很多时候让走索引称为了可能,同时表达意思会相对清楚一点

      如果mysql优化器发现,走索引比不走索引成本还要高,肯定就会放弃索引,这些条件!=,>is null,is not null经常被认为让索引失效,其实是因为一般情况下,查询的成本高,优化器自动放弃的。

19.不要有超过五个以上的表连接

  • 理由:

    • 连表越多,编译的时间和开销也就越大
    • 把连接表拆开成较小的几个执行,可读性更高

20.exist & in的合理使用

假设表A表示某企业的员工表,表B表示部门表,查询所有部门的所有员工:

  • 使用in

    select * from A where deptId in (select depId from B);
    
  • 使用exists

    select * from A where exists (select 1 from B where A.deptId = B.deptId); 
    

    数据库最费劲的就是跟程序链接释放。假设链接了两次,每次做上百万次的数据集查询,查完就走,这样就只做了两次;相反建立了上百万次链接,申请链接释放反复重复,这样系统就受不了了。即mysql优化原则,就是小表驱动大表,小的数据集驱动大的数据集,从而让性能更优。

    因此,我们要选择最外层循环小的,也就是,如果B的数据量小于A,适合使用in,如果B的数据量大于A,即适合选择exist

21.尽量用union all 替换union

  • 反例

    select * from user where userid=1 
    union  
    select * from user where age = 10
    
  • 正例

    select * from user where userid=1 
    union all  
    select * from user where age = 10
    
  • 理由:

    • 使用union,不管检索结果有没有重复,都会尝试进行合并,然后在输出最终结果前进行排序,如果已知检索结果没有重复记录,使用union all代替union会提高效率

22.索引不宜过多

  • 理由:

    • 索引虽然提高了查询的效率,但是降低了插入和更新的效率
    • insert或update时有可能会重建索引,所以键所以需要慎重考虑

23.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型

  • 反例

    king_id` varchar(20) NOT NULL COMMENT '守护者Id'
    
  • 正例

    `king_id` int(11) NOT NULL COMMENT '守护者Id'`
    
  • 理由:

    • 相对于数字型字段,字符型会降低查询和连接的性能,并会增加存储开销

24.索引不适合建在有大量重复数据的字段上

  • 理由:

    • 因为SQL优化器是根据表中数据量来进行查询优化的,如果索引列有大量重复数据,Mysql查询优化器推算发现不走索引的成本更低,很可能就放弃索引了。

25.尽量避免向客户端返回过多数据量

26.尽可能使用varchar/nvarchar 代替 char/nchar。

  • 反例

     `deptName` char(100) DEFAULT NULL COMMENT '部门名称'
    
  • 正例

    `deptName` varchar(100) DEFAULT NULL COMMENT '部门名称'
    
  • 理由:

    • 因为首先变长字段存储空间小,可以节省存储空间。
    • 其次对于查询来说,在一个相对较小的字段内搜索,效率更高。

27.为了提高group by 语句的效率,可以在执行到该语句前,把不需要的记录过滤掉。

  • 反例

    select job,avg(salary) from employee  group by job having job ='president' 
    or job = 'managent'
    
  • 正例

    select job,avg(salary) from employee where job ='president' 
    or job = 'managent' group by job;
    

28.字段类型是字符串,where时一定用引号括起来,否则索引失效

  • 反例

    select * from user where userid =123;
    
  • 正例

    select * from user where userid ='123';
    
  • 理由:

    • 为什么第一条语句未加单引号就不走索引了呢? 这是因为不加单引号时,是字符串跟数字的比较,它们类型不匹配,MySQL会做隐式的类型转换,把它们转换为浮点数再做比较。

29.使用explain 分析你SQL的计划

  • 正例

    explain select * from user where userid =10086 or age =18;
    
  • 理由:

    • 日常开发写SQL的时候,尽量养成一个习惯吧。用explain分析一下你写的SQL,尤其是走不走索引这一块。
发布了72 篇原创文章 · 获赞 99 · 访问量 1万+
App 阅读领勋章
微信扫码 下载APP
阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 像素格子 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览