算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !
今天和大家聊的问题叫做 132 模式,我们先来看题面:
https://leetcode-cn.com/problems/132-pattern/
Given an array of n integers nums, a 132 pattern is a subsequence of three integers nums[i], nums[j] and nums[k] such that i < j < k and nums[i] < nums[k] < nums[j].
Return true if there is a 132 pattern in nums, otherwise, return false.
给你一个整数数组 nums ,数组中共有 n 个整数。132 模式的子序列 由三个整数 nums[i]、nums[j] 和 nums[k] 组成,并同时满足:i < j < k 和 nums[i] < nums[k] < nums[j] 。
如果 nums 中存在 132 模式的子序列 ,返回 true ;否则,返回 false 。
示例
示例 1:
输入:nums = [1,2,3,4]
输出:false
解释:序列中不存在 132 模式的子序列。
示例 2:
输入:nums = [3,1,4,2]
输出:true
解释:序列中有 1 个 132 模式的子序列:[1, 4, 2] 。
示例 3:
输入:nums = [-1,3,2,0]
输出:true
解释:序列中有 3 个 132 模式的的子序列:[-1, 3, 2]、[-1, 3, 0] 和 [-1, 2, 0] 。
解题
原题中说明,要存在132的模式,那么数组之内就一定要有至少三个数才行。因此我们要在数组长度大于2的情况下找出符合132模式的子数组,再直接返回真,其余情况(找不到132模式的子数组的时候)返回假。需要至少三个变量,yi、er和san分别代表第一个、第二个和到三个数。初始状态下,yi先取坐标为0的数字,因为无论如何,yi在三个数中都必须是坐标最小的。er从yi的右边开始取,这时为了保证最大可能性能取到符合要求的子数组,因此yi必须尽可能小,也就是说,每一次er的坐标变化后,yi都要更新为er左边最小的数。并且每一次取了yi和er的值后,都要判断满足yi小于er。yi和er都初定后,开始从er的右边给san取值,只要找到san的值介于yi和er之间的,就返回真。
class Solution {
public boolean find132pattern(int[] nums) {
int l=nums.length;
if(l>2){
int yi=nums[0];//第一个数
int san=0;//第三个数
for(int i=1;i<l;i++){
int er=nums[i];//第二个数
yi=Math.min(yi,nums[i-1]);//第一个数要始终是er左边的最小值
if(yi>er){
continue;
}
for(int j=i+1;j<l;j++){
san=nums[j];
if(er>san&&san>yi){
return true;
}
}
}
}return false;
}
}
好了,今天的文章就到这里,如果觉得有所收获,请顺手点个在看或者转发吧,你们的支持是我最大的动力 。
上期推文: