iterate7
码龄9年
关注
提问 私信
  • 博客:295,788
    295,788
    总访问量
  • 67
    原创
  • 1,945,624
    排名
  • 83
    粉丝
  • 0
    铁粉

个人简介:阳春布德泽,咱能生光辉? 百川东到海,不能复西归, 少壮要努力,以免徒伤悲!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2015-12-10
博客简介:

iterate7的博客

博客描述:
探索技术背后的算法,感受算法背后的智慧
查看详细资料
个人成就
  • 获得243次点赞
  • 内容获得35次评论
  • 获得638次收藏
  • 代码片获得164次分享
创作历程
  • 10篇
    2020年
  • 17篇
    2019年
  • 21篇
    2018年
  • 16篇
    2017年
  • 3篇
    2015年
成就勋章
TA的专栏
  • 知识图谱
    2篇
  • 算法
    30篇
  • 数据挖掘
    10篇
  • 推荐技术
    5篇
  • 日志分析
    1篇
  • 分布式搜索
    4篇
  • 基础知识
    23篇
  • 生活点滴
  • 其他
    4篇
  • 深度学习
    13篇
  • RNNs
    1篇
  • 机器学习
    21篇
  • leetcode
    6篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflowpytorchnlp
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

向量检索milvus之一:以图搜图

安装milvus关于milvusmilvus作为一个集成的开源平台,目标就是向量检索的集成平台。类似于elasticsearch集成了搜索。细节大家可以直接看官网。https://www.milvus.io/cn/docs/v0.11.0/overview.md安装说起来其实挺容易,方法也比较清晰。不过下载比较慢。>> docker pull milvusdb/milvus:0.11.0-cpu-d101620-4c44c00.11.0-cpu-d101620-4c44c0: Pul
原创
发布博客 2020.11.01 ·
2595 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

milvus的milvus.yaml 官方配置文件

发布资源 2020.11.01 ·
yaml

bert第三篇:tokenizer

文章目录tokenizer基本含义bert里涉及的tokenizerBasicTokenzerwordpiecetokenizerFullTokenzierPretrainTokenizer关系图实操如何训练训练自己中文的tokenizer总结引用tokenizer基本含义tokenizer就是分词器; 只不过在bert里和我们理解的中文分词不太一样,主要不是分词方法的问题,bert里基本都是最大匹配方法。最大的不同在于“词”的理解和定义。 比如:中文基本是字为单位。英文则是subword的概念,例
原创
发布博客 2020.10.08 ·
34185 阅读 ·
54 点赞 ·
6 评论 ·
185 收藏

bert系列第二篇:几个损失函数

目录L1-Loss(MAE)MSE(L2 Loss)nllloss=negative-log-loss那么如何计算呢?能否举个例子crossentropy仔细思考上面的nllloss总结参考文献L1-Loss(MAE)Loss(x,y)=1N∑i(∣xi−yi∣)Loss(x,y)=\frac{1}{N} \sum_{i}( |x_i-y_i|)Loss(x,y)=N1​i∑​(∣xi​−yi​∣)简单而言,就是两个向量的绝对值的误差。 默认求平均,可以设置为sum。也是mean absolut
原创
发布博客 2020.10.07 ·
7872 阅读 ·
3 点赞 ·
1 评论 ·
19 收藏

bert系列第一篇: bert进行embedding

bert可以干啥我们理解bert为一个transformer集合,输入是一句话,输出是经过transform的结果。我们了解,深度学习的本质就是抽取核心特征, 这也是bert的核心功能,而且以transformer为主要模块,具有更优秀的attention功能,捕获的特征更为精确和全面。一句话概括, bert就是一个抽取器。输入一句话(词序列),输出抽取后的embedding序列。输入输出输入会加入特殊的[CLS]代表整句话的含义,可以用于分类。input的词help,prince,ma
原创
发布博客 2020.10.04 ·
16709 阅读 ·
29 点赞 ·
2 评论 ·
88 收藏

搜索排名:基于lightgbm的learn2rank

learning2rankpointwise: 一个文档一个point,计算得分。可以排序; 回归问题,分类问题都可。pairwise: 任何两篇的排序;listwise:所有文档的排序损失之和。lightgbmLightGBM is a gradient boosting framework that uses tree based learning algorithms.https://lightgbm.readthedocs.io/en/latest/基于lightgbm的learn
原创
发布博客 2020.10.03 ·
2210 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏

方差、偏差(variance、bias)

概念方差的概念,是无监督的,描述的是一堆数据的聚集的程度。聚集的厉害方差就很小。偏差的概念,是有监督,偏差是指和目标的距离。 偏差大,就是离目标大。举例想象你开着一架黑鹰直升机,得到命令攻击地面上一只敌军部队,于是你连打数十梭子,结果有一下几种情况:1.子弹基本上都打在队伍经过的一棵树上了,连在那棵树旁边等兔子的人都毫发无损,这就是方差小(子弹打得很集中),偏差大(跟目的相距甚远)。2.子弹打在了树上,石头上,树旁边等兔子的人身上,花花草草也都中弹,但是敌军安然无恙,这就是方差大(子弹到处都是)
原创
发布博客 2020.08.20 ·
760 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

MAP_K 检索评估指标

1. MAP_KMAP: mean average precision.precision很容易理解;precision@10表示检索10个文档中包含相关所占的比例, 比如检索了10个,有9个是相关的,那么 precision@10=0.9average precision, 也容易理解。 可以看p1,p2,p3,p4,p5,p6的平均值;就是 ap6的值mean 则是对所有的case求mean则是结果。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(im
原创
发布博客 2020.05.24 ·
3159 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

CNN再思

CNNconvolutional neural network核心步骤则是:卷积、池化对于分类问题,主要的流程:至于卷积和池化则在后面代码介绍,一句话理解:卷积就是抽取某些特征。filter就是卷积核,抽取某类特征,如果想抽取不同的特征,则就是多个filter,抽取之后形成feature map。我们要学习什么参数呢?filter.比如我们有3个filter,每个filter是...
原创
发布博客 2020.03.08 ·
214 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

cart回归树:练手+sklearn

背景cart树作为决策树的一种,在非常多的地方被使用。既可以用于分类问题,也可以用于回归问题。分类问题则非常容易理解,利用gini系数较大的特征进行样本分裂,从而构建一颗分类树。 今天我们要探讨的是回归树。回归树cart简介回归树,则目标函数则是平方差,也就是说,分完之后形成left和right子树,每个子树对label,也就是y,进行平方差的计算。最后左右子树的平方差之和则是评估标注。 ...
原创
发布博客 2020.02.23 ·
2313 阅读 ·
1 点赞 ·
0 评论 ·
10 收藏

mac OWLVis安装

OWLVis介绍如果我们需要管理类似KG知识图谱的东西,可以使用protege。这款斯坦福共享的软件非常棒。也有网页版:webpretege.stanford.edu.但是我们需要观察更细致的树形结构:如何安装但是安装之后仍然遇到: dot的问题 /usr/local/bin/dot no such file问题。那么我们需要安装dot。brew install GraphVis ...
原创
发布博客 2020.01.16 ·
254 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

动态规划之二:背包问题knapsack

背包问题描述有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?类似的问题非常多:比如每个任务都有时间和价值,我们有一定的时间,现在在有限的的时间里完成最大价值的任务,如何安排?任务ABCDEFG所得收益7951214612需要时间3426735下面就以这个问题来进行分析。...
原创
发布博客 2019.12.08 ·
657 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

动态规划解决宫格移动

介绍动态规划(英语:Dynamic programming,简称 DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再根据子问...
原创
发布博客 2019.12.07 ·
288 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

python并行加速之: multiprocessing, multithread

背景对于java的多线程问题,可以方便利用disrupt架构。在python则一般是使用multiprocessing和multithread两种解决方案,前者是基于cpu; 后者基于多线程。具体方案Process 方案def f(x, ret): ret[x] = x*x def task_multiprocessing_get(): ret = {} ...
原创
发布博客 2019.11.03 ·
2480 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

gridsearch_kfold.ipynb

发布资源 2019.10.06 ·
ipynb

GridSearch & Kfold & cross validation

what’s cross validation?Cross-validation is a technique that is used for the assessment of how the results of statistical analysis generalize to an independent data set. Cross-validation is largely u...
原创
发布博客 2019.10.06 ·
688 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

方差标准差.ipynb

发布资源 2019.10.05 ·
ipynb

机器学习的第一步:数据预处理

背景以前讲过一篇关于特征缩放的,其实本质也是特征预处理,使得标注化。https://blog.csdn.net/iterate7/article/details/78881562这里主要是巩固,同时结合sklearn里的代码直接来看。标准化z-score方法x′=x−μσx' = \dfrac{x - \mu}{\sigma}x′=σx−μ​翻译公式为:(x-mean)/std 计...
原创
发布博客 2019.10.05 ·
1027 阅读 ·
6 点赞 ·
0 评论 ·
13 收藏

pyscaffold建立项目管理

pyscaffold新建一个python项目的管理软件。一个命令就可以PyScaffold helps you to easily setup a new Python project.安装三种方法:1. pip install pyscaffold2. pip install pyscaffold[all]3. conda install -c conda-forge pyscaf...
原创
发布博客 2019.09.01 ·
1027 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

如何利用conda建立的虚拟空间在jupyter里开发

conda安装之后使用命令行将anaconda的bin目录加入PATH,根据版本不同,也可能是~/anaconda3/binecho ‘export PATH="~/anaconda2/bin:$PATH"’ >> ~/.bashrc更新bashrc以立即生效source ~/.bashrc如果mac安装了zshrc怎么办,简单修改~/.zshrc文件,在其中添加:sour...
原创
发布博客 2019.08.29 ·
293 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多