UVa Problem 10270 Bigger Square Please... (拼接正方形)

// Bigger Square Please... (拼接正方形) // PC/UVa IDs: 110808/10270, Popularity: C, Success rate: high Level: 3 // Verdict: Accepted // Submission Date: 2011-09-25 // UVa Run Time: 0.032s // // 版权所有(C)2011,邱秋。metaphysis # yeah dot net // // [问题描述] // Tony 有很多张正方形纸片。这些纸片的边长为 1 到 N - 1 不等,且每种纸片都有无数张。但是他并不 // 满足。他想要一张更大的 ---- 边长为 N 的纸片。 // // 可以把已有纸片拼接成他想要的大正方形。例如,一个边长为 7 的正方形可以通过如下 9 个更小的正方形 // 拼接而成(使用字母来填充相应的正方形,A 表示边长为 1 的正方形纸片,B 表示边长为 2 的正方形纸 // 片,依此类推): // // B B B B C C C // B B B B C C C // A B B A C C C // A B B D D D D // C C C D D D D // C C C D D D D // C C C D D D D // // 在拼接出的正方形中间不能有空隙,不能有纸片超出正方形,且纸片不能相互重叠。并且,Tony 想要用尽 // 可能少的纸片来拼出这个大的正方形。你能帮助他吗? // // [输入] // 输入第一行有一个单独的整数 T,表示测试数据的组数。每组数据为一个单独的整数 N(2 <= N <= 50)。 // // [输出] // 对于每组数据,输出一行,包含一个整数 K,表示最少需要的纸片数。接下来 K 行,每行三个整数 x,y, // l,表示纸片左上角的坐标 (1 <= x,y <= N) 以及纸片的边长。 // // [样例输入] // 3 // 4 // 3 // 7 // // [样例输出] // 4 // 1 1 2 // 1 3 2 // 3 1 2 // 3 3 2 // 6 // 1 1 2 // 1 3 1 // 2 3 1 // 3 1 1 // 3 2 1 // 3 3 1 // 9 // 1 1 2 // 1 3 2 // 3 1 1 // 4 1 1 // 3 2 2 // 5 1 3 // 4 4 4 // 1 5 3 // 3 4 1 // // [解题方法] // 该题是 UVa 上的所有题目中 10% 较难的题目中的一题。如果是实时产生拼接方案,而不是预先生成拼接 // 方案再提交,说明水平确实比较高。题目要求用边长为 1 - (N - 1) 的任意张纸片拼接成一个边长为 // N 的正方形纸片,纸片间互相不能重叠,且不能超出边长为 N 的正方形范围,求使用纸片数最少的拼接方 // 案,以左上角为坐标起点 (1,1),按坐标、纸张边长的顺序输出每张纸片的坐标、边长值。 // // 根据题意,设需要拼接的正方形边长为 N,很明显,拼接方案是一系列平方数的和。问题转化为如何将 N 表 // 示为平方数之和,且要求平方数的个数最小,这个问题可以通过回溯来解决。但是得到了一个将 N 拆分为平 // 方数之和的方案,并不表示就能将这些大小的纸片拼接成一个边长为 N 的纸片,例如,对于 N = 5,可以 // 拆分为 9 与 16 的和,9 和 16 都是平方数,但是实际上无法将一张边长为 3 和一张边长为 4 的纸片 // 拼接为一张边长为 5 的纸片,所以在生成一个平方数和方案后,需要实际尝试放置,若能放置,则表明此方 // 案可行,予以记录,将所有可行的方案记录后,挑选其中纸片数最小的方案即为所求。这样的话,将 N 拆分 // 为平方数之和是一步回溯,将拆分方案尝试放置又是一步回溯,需要通过两步回溯来解决本问题。 // // 考虑到需要两步回溯,如果不予以充分剪枝,则计算时间将不可忍受,在 UVa BBS 上关于这个题目的讨论 // 即反映了这种情况。在将 N 拆分为平方数和的一步,若能生成一个拆分方案,尽管不是最优的,但是它的总 // 个数较小,且能实际放置,则将此方案的总个数作为剪枝阈值将可避免较多无效的搜索,将 N 拆分为平方数 // 后且能实际放置的一个非最优方案可以这样构造:左上角放置一个边长为 (N - 2) 的纸片,然后在右侧和 // 下方放置边长为 2 的纸片,剩余的空间放置边长为 1 的纸片,这样总的纸片需要数量为: 1 + [N / 2] // + [(N - 2) / 2] + 4,其中符号 [] 表示取整,这样总的纸片放置数在 N 附近,可以做为一个较好 // 的剪枝阈值。通过回溯发现了总个数更少的方案后,则开始尝试实际放置,可以通过设立一个网格数组,当 // 填充边长为 A 的纸片时,在网格中查找是否有起始坐标为 (x,y) 且边长为 A 的空白区域,若无此种 // 空白区域,则表明该方案无法实际放置,若能找到,则找到所有这样的起始位置,逐一回溯进行尝试,尝试 // 某位置后,则将该区域标记为已填充,若后继填充不成功返回时则撤销标记。对于已经产生但不能实际拼接 // 的拆分方案需要予以记录,在后继生成的方案中,若有方案与记录的方案相同,则不必再次浪费时间搜索。 // // 通过网络搜索该问题的相关信息可以知道,当 N MOD 2 = 0 或者 N MOD 6 = 3 时,有特殊的解法。 // 对于 N MOD 2 = 0,即 N 为偶数时,最少纸片数的拼接方法为:用 4 张边长为 N / 2 的纸片拼接得 // 到边长为 N 的正方形。当 N MOD 6 = 3 时,放置方法与 N = 3 的方案类似,只不过将相应的纸片边长 // 增加同样的数量。同时平方数如 25 的拼接方案和 5 的拼接方案类似,49 的拼接方案和 7 的拼接方案 // 类似,则在 2 - 50 之间的数,只需要求出质数的拼接方法即可。网络上已经有 2 - 50 之间的质数的 // 拼接方案和最少需要纸片数,利用这些信息,可以显著减少计算时间,甚至直接生成拼接方案后再提交。 // // 参考网页: // http://www2.stetson.edu/~efriedma/mathmagic/1298.html // http://mathpuzzle.com/perkinsbestquilts.txt // http://mathworld.wolfram.com/MrsPerkinssQuilt.html #include <iostream> #include <cstring> #include <algorithm> #include <ctime> using namespace std; #ifndef DEBUG_MODE #define DEBUG_MODE // 测试用,若在线提交,需要将该语句注释掉。 #endif #define NMAX 20 // 拆分时,纸片最多需要的张数。 #define NPRIME 11 // 10 - 50 之间的质数个数。 #define SMAX 1024 // 最多保存的未成功拼接的拆分方案数。 #define PMAX 2500 // 网格中坐标最大个数。 #define NCELL 50 // 网格边长。 struct square // 表示拼接的纸片信息。 { int x, y; // 纸片在网格中的坐标。 int size; // 纸片的边长。 }; square squares[NMAX]; // 记录当前的拼接方案。 square best[NMAX]; // 记录搜索得到的最好实际拼接方案。 struct point // 表示网格中的一个点。 { int x; // 点的横坐标。 int y; // 点的纵坐标。 }; // 2 - 50 之间的奇数拼接时所需要的最少纸片数。 int tip[24] = { 6, 8, 9, 6, 11, 11, 6, 12, 13, 6, 13, 8, 6, 14, 15, 6, 8, 15, 6, 15, 16, 6, 17, 9 }; // 10 - 50 之间的质数的最佳拆分方案。数组第一个数表示质数,第二个数表示所需纸片数,其后的数字为 // 纸片大小,按纸片从大到小排列。 int trick[NPRIME][NMAX] = { {11, 11, 6, 5, 5, 4, 2, 2, 2, 2, 1, 1, 1}, // 11 {13, 11, 7, 6, 6, 4, 3, 3, 2, 2, 2, 1, 1}, // 13 {17, 12, 9, 8, 8, 5, 4, 4, 3, 2, 2, 2, 1, 1}, // 17 {19, 13, 10, 9, 9, 5, 5, 5, 3, 2, 2, 2, 1, 1, 1}, // 19 {23, 13, 12, 11, 11, 7, 5, 5, 4, 3, 3, 2, 2, 1, 1}, // 23 {29, 14, 17, 12, 12, 9, 8, 8, 4, 4, 3, 2, 2, 2, 1, 1}, // 29 {31, 15, 16, 15, 15, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1}, // 31 {37, 15, 19, 18, 18, 11, 8, 8, 6, 5, 5, 3, 3, 2, 1, 1, 1}, // 37 {41, 15, 23, 18, 18, 12, 11, 11, 7, 5, 4, 3, 3, 2, 2, 1, 1}, // 41 {43, 16, 22, 21, 21, 11, 11, 11, 6, 5, 5, 3, 3, 3, 2, 1, 1, 1}, // 43 {47, 17, 25, 22, 22, 13, 12, 9, 8, 8, 5, 5, 4, 3, 3, 2, 2, 1, 1}, // 47 }; int n; // 要拼接的正方形边长。 int smallest; // 当前实际最佳拼接方案的纸片数。 int ncount[NCELL]; // 记录拼接方案中重复纸片的张数。 int cell[NCELL][NCELL]; // 尝试拼接时使用的网格。 int backup[NCELL][NCELL]; // 记录实际最佳方案网格状态。 int ncache[NMAX]; // 记录的未成功拼接的拆分方案个数。 int cache[NMAX][SMAX][NMAX]; // 记录未能成功拼接的拆分方案。 bool found; // 当前是否发现了非最优拆分方案的实际拼接方案。 bool finished; // 提前结束回溯的标志。 // 在网格 cell 中查找边长为 size 的空白区域的左上角坐标。 int find(int size, point points[PMAX]) { // 初始时,找到的坐标个数为 0。 int npoints = 0; for (int y = 0; y <= (n - size); y++) for (int x = 0; x <= (n - size); x++) // 找到了空白点。 if (cell[y][x] == 0) { // 查看此点是否存在边长为 size 的正方形空白区域。 bool empty = true; for (int i = y; i < (y + size); i++) { for (int j = x; j < (x + size); j++) if (cell[i][j] != 0) { empty = false; break; } if (!empty) break; } // 存在边长为 size 的空白区域,记录起点坐标。 if (empty) { points[npoints].x = x; points[npoints].y = y; npoints++; } } return npoints; } // 输出拼接方案。 void print(square s[NMAX], int nsquares) { #ifdef DEBUG_MODE cout << "A FILL SOLUTION FOR SQUARE WITH SIZE: " << n << endl; for (int x = 0; x < n; x++) { for (int y = 0; y < n; y++) cout << (char) ('A' + backup[x][y] - 1) << " "; cout << endl; } #endif cout << nsquares << endl; for (int i = 0; i < nsquares; i++) cout << s[i].x << " " << s[i].y << " " << s[i].size << endl; } // 尝试按照拆分方案 blocks 拼接边长为 n 的正方形。 void fill(int blocks[], int ncurrent, int goal, bool display_when_find) { // 所有纸片均已匹配,表明该拆分方案可行,输出。 if (ncurrent == goal) { memcpy(backup, cell, sizeof(cell)); // 是否显示结果。 if (display_when_find) print(squares, ncurrent); else memcpy(best, squares, sizeof(squares)); finished = true; } else { int npoints; // 记录找到的坐标个数。 point points[PMAX]; // 记录起始坐标。 // 未找到则返回。 if ((npoints = find(blocks[ncurrent], points)) == 0) return; // 逐一尝试找到的位置。 for (int i = 0; i < npoints; i++) { int x = points[i].x; int y = points[i].y; int s = blocks[ncurrent]; // 启发式规则:第一张纸片总是放置在左上角。 if (ncurrent == 0 && (y != 0 || x != 0)) continue; // 启发式规则:第二张纸片总是放置在右上角。 if (ncurrent == 1 && (y != 0 || x != blocks[0])) continue; // 启发式规则:第三张纸片总是放置在左下角。 if (ncurrent == 2 && (y != blocks[0] || x != 0)) continue; // 启发式规则:第四张纸片总是靠近右侧边放置。 if (ncurrent == 3 && x != (n - blocks[ncurrent])) continue; // 启发式规则:第五张纸片总是靠近右侧边或下边放置。 if (ncurrent == 4 && (x != (n - blocks[ncurrent]) && y != (n - blocks[ncurrent]))) continue; // 记录当前的拼接方法。注意坐标起点的不同,输出要求从起点 (1,1) // 开始输出。 squares[ncurrent].x = (x + 1); squares[ncurrent].y = (y + 1); squares[ncurrent].size = s; // 标记网格中的相应区域为填充状态。 for (int gy = y; gy < (y + s); gy++) for (int gx = x; gx < (x + s); gx++) cell[gy][gx] = s; // 继续向前匹配下一张纸片。 fill(blocks, ncurrent + 1, goal, display_when_find); // 是否结束回溯。 if (finished) return; // 未结束回溯,表明当前拼接方案不可行,撤销对网格的更改。 for (int gy = y; gy < (y + s); gy++) for (int gx = x; gx < (x + s); gx++) cell[gy][gx] = 0; } } } // 排序函数的顺序规则。 bool cmp(int x, int y) { return x > y; } // 使用最少纸片数作为剪枝阈值搜索拆分方案。 void cut_by_tip(int area, int blocks[NMAX], int nblocks, int goal) { // 当切分纸片数达到剪枝阈值,但仍有面积剩余,则结束回溯。 if (area > 0 && nblocks == goal) return; // 当切分完毕,切分的总纸片数不为剪枝阈值,则结束回溯。 if (area == 0 && nblocks != goal) return; // 切分完毕,且切分方案纸片张数为最少。 if (area == 0) { int temp[NMAX]; // 注意数组作为形式参数时,传递的是指针,故不能使用 sizeof(blocks) 来计算 // 数组 blocks 的大小。 memcpy(temp, blocks, NMAX * sizeof(int)); // 将纸片大小按从大到小排序。 sort(temp, temp + nblocks, cmp); // 若在未成功拼接的方案中未找到当前切分方案,则尝试拼接。 bool exist = false; for (int i = 0; i < ncache[nblocks - 1]; i++) { bool equal = true; for (int j = 0; j < nblocks; j++) if (cache[nblocks - 1][i][j] != temp[j]) { equal = false; break; } if (equal) { exist = true; break; } } // 不存在则尝试拼接。 if (!exist) { // 重置网格。 memset(cell, 0, sizeof(cell)); // 尝试拼接。 fill(temp, 0, nblocks, true); // 成功则返回。 if (finished) return; // 拼接不成功,予以保存。 memcpy(cache[nblocks - 1][ncache[nblocks - 1]++], temp, sizeof(temp)); } } else { // 找到能切分出的最大边长的纸片。 int up; for (int u = n - 1; u >= 1; u--) if (area >= (u * u)) { up = u; break; } // 启发式规则:优先考虑大小在 up / 2 + 1 和 up 之间的纸片。 for (int r = (up / 2 + 1); r <= up; r++) { // 启发式规则:第二张纸片的大小与第一张纸片的大小和为 n。 if (nblocks == 1 && (r + blocks[0]) != n) continue; // 启发式规则:第三张纸片的大小应该与第二张纸片的大小相同。 if (nblocks == 2 && r != blocks[1]) continue; // 启发式规则:第四张纸片和第五张纸片的大小之和应该为第一张纸片的大小, // 即拼接所得到的正方形某一边纸片数不能超过 3 张。 if (nblocks == 4 && (r + blocks[3]) != blocks[0]) continue; // 记录当前切分。 blocks[nblocks] = r; // 继续切分。 cut_by_tip(area - (r * r), blocks, nblocks + 1, goal); // 根据 finished 标志决定是否提前退出。 if (finished) return; } } } // 使用回溯法构建拆分方案。参数为尚未切分的面积数量。 void cut_by_hard_work(int area, int blocks[NMAX], int nblocks) { // 当切分纸片数达到当前可行的最小纸片数,但仍有面积剩余,不需继续尝试。 if (area >= 0 && nblocks > smallest) return; // 对于纸张数为 smallest 来说,已经找到了一个实际拼接方案,则对于同样的纸张数来说,其他 // 拆分方案不必再去尝试。 if (area == 0 && nblocks == smallest && found) return; // 启发式规则:至少有两张边长为 1 的纸片。 if (area == 0 && ncount[1] <= 1) return; // 切分完毕,且切分方案纸片张数较当前最优值 smallest 小。 if (area == 0) { int temp[NMAX]; // 注意数组作为形式参数时,传递的是指针,故不能使用 sizeof(blocks) 来计算 // 数组 blocks 的大小。 memcpy(temp, blocks, NMAX * sizeof(int)); // 将纸片大小按从大到小排序。 sort(temp, temp + nblocks, cmp); // 不检测当前方案是否与之前生成的未能成功拼接的方案重复,会增加搜索时间。 // 但检测的话生成方案数很多,需要多量的内存。 // 重置网格。 memset(cell, 0, sizeof(cell)); // 尝试拼接。 finished = false; fill(temp, 0, nblocks, false); if (finished) { smallest = nblocks; found = true; } } else { // 找到能切分出的最大边长的纸片。 int c, r, up, down, step; for (r = n - 2; r >= 1; r--) if (area >= (r * r)) break; c = r; step = (nblocks == 0) ? 1 : (-1); r = (nblocks == 0) ? 1 : r; for (; c >= 1; c--, r += step) { // 启发式规则:第一张纸片的大小在 n / 2 + 1 和 n - 2 之间的纸片。 if (nblocks == 0 && r < (n / 2 + 1)) continue; // 启发式规则:第二张纸片的大小与第一张纸片的大小和为 n。 if (nblocks == 1 && (r + blocks[0]) != n) continue; // 启发式规则:第三张纸片的大小应该与第二张纸片的大小相同。 if (nblocks == 2 && r != blocks[1]) continue; // 启发式规则:第四张纸片和第五张纸片的大小之和应该为第一张纸片的大小, // 即拼接所得到的正方形某一边纸片数不能超过 3 张。 if (nblocks == 4 && (r + blocks[3]) != blocks[0]) continue; // 启发式规则:相同大小的纸片数不超过 4 张。 if ((ncount[r] + 1) > 4) continue; ncount[r]++; // 记录当前切分。 blocks[nblocks] = r; // 继续切分。 cut_by_hard_work(area - (r * r), blocks, nblocks + 1); ncount[r]--; } } } // 使用已经生成好的最少纸片数拆分方案来得到拼接方案。 void solve_it_by_trick() { // 查找相应质数的的拆分方案。 int blocks[NMAX]; int nblocks; for (int r = 0; r < NPRIME; r++) if (trick[r][0] == n) { // 找到相应质数的数据,设置纸片总数及具体拆分方案。 nblocks = trick[r][1]; for (int c = 0; c < nblocks; c++) blocks[c] = trick[r][c + 2]; break; } // 重置结束标志。 finished = false; // 重置网格数组。 memset(cell, 0, sizeof(cell)); // 根据相应的最佳拆分方案拼接正方形。 fill(blocks, 0, nblocks, true); } // 使用最少纸片数拆分方案的纸片张数作为剪枝阈值,搜索可行的拼接方案。 void solve_it_by_tip() { int blocks[NMAX]; finished = false; memset(ncache, 0, sizeof(ncache)); // 若使用网络已经提供的拼接边长为 n 的正方形至少需要的纸张数,则可大 // 大减少搜索时间,否则搜索时间很长。 int goal = tip[n / 2 - 1]; // 用回溯法将 n * n 拆分为不大于 smallest 个平方数之和。 cut_by_tip(n * n, blocks, 0, goal); } // 利用求最大公约数的辗转相除法得到较好的拼接剪枝阈值。 void gcd(int a, int b) { if (a < b) { int temp = a; a = b; b = temp; } smallest += (a / b) * 2; if (a % b != 0) gcd(a % b, b); } // 完全靠实时回溯生成最少纸片数的拼接方案。 void solve_it_by_hard_work() { int current[NMAX]; memset(ncache, 0, sizeof(ncache)); // 若使用网络已经提供的拼接边长为 n 的正方形至少需要的纸张数,则可大大减少搜索时间,否 // 则搜索时间很长。若不使用,则在计算时需要动态调整 smallest 的值。当 n 逐渐增大时,可 // 以选择较大的纸片来填充已减少剪枝阈值的值。 smallest = 1 + n / 2 + (n - 2) / 2 + 4; // 当 n 值较大时,试图找到一个更好的剪枝阈值。可以这样寻找:先放一张边长为 s 的纸片在左 // 上角,然后再放一张边长为 (n - s) 的纸片在右下角,之后在剩余空间先填充边长为 (n - // s) 的纸片,剩余的空间则尽可能填充大的正方形,余下的填充边长为 1 的正方形纸片,这样 // 获得的剪枝阈值较好。实际上可以利用求最大公约数的辗转相除法来得到。 int threshold = smallest; for (int s = (n / 2 + 1); s < (n - 2); s++) { smallest = 2; gcd(s, n - s); if (threshold > smallest) threshold = smallest; } smallest = threshold; // 用回溯法将 n * n 拆分为不大于 smallest 个平方数之和。 cut_by_hard_work(n * n, current, 0); // 输出最佳方案。 print(best, smallest); } // 输出在坐标 (x,y) 边长为 size 的纸片。 void building(int x, int y, int size) { cout << x << " " << y << " " << size << endl; } int main(int ac, char *av[]) { #ifdef DEBUG_MODE clock_t start = clock(); #endif int cases; // 测试数据例数。 cin >> cases; while (cases--) { cin >> n; // 若 n 为偶数,则直接输出拼接方案。 if (n % 2 == 0) { int size = n / 2; cout << "4" << endl; building(1, 1, size); building(1, 1 + size, size); building(1 + size, 1, size); building(1 + size, 1 + size, size); } // 若 n 为形如 6 * m + 3 的数,则拼接方案与 n = 3 时相同,直接输出拼接方案。 else if (n % 6 == 3) { int size = n / 3; cout << "6" << endl; building(1, 1, size * 2); building(1 + size * 2, 1, size); building(1 + size * 2, 1 + size, size); building(1 + size * 2, 1 + size * 2, size); building(1, 1 + size * 2, size); building(1 + size, 1 + size * 2, size); } // 对于 m 和 n,m 为质数且是能整除 n 的最小质数,则有 g(m) = g(n),且 // 拼接方案类似。若 n 为奇数,且 5 是能整除 n 的最小质数,则 g(5) = g(n), // 包括 5 和 25。 else if (n % 5 == 0) { int size = n / 5; cout << "8" << endl; building(1, 1, size * 3); building(1 + size * 3, 1, size * 2); building(1 + size * 3, 1 + size * 2, size * 2); building(1, 1 + size * 3, size * 2); building(1 + size * 2, 1 + size * 3, size); building(1 + size * 2, 1 + size * 4, size); building(1 + size * 3, 1 + size * 4, size); building(1 + size * 4, 1 + size * 4, size); } // 若 n 为奇数,且 7 是能整除 n 的最小质数,则 g(7) = g(n),包括 7 和 49。 else if (n % 7 == 0) { int size = n / 7; cout << "9" << endl; building(1, 1, size * 4); building(1 + size * 4, 1, size * 3); building(1, 1 + size * 4, size * 3); building(1 + size * 3, 1 + size * 5, size * 2); building(1 + size * 5, 1 + size * 5, size * 2); building(1 + size * 5, 1 + size * 3, size * 2); building(1 + size * 4, 1 + size * 3, size); building(1 + size * 4, 1 + size * 4, size); building(1 + size * 3, 1 + size * 4, size); } // 对于其他情况,通过回溯找到满足题意的方案。 else { // 使用已经生成好的拆分方案尝试拼接。使用此方法 UVa RT 为 0.032s。 solve_it_by_trick(); // 直接使用最少纸片数作为剪枝阈值,使用回溯方法获得拆分方案,使用此 // 方法得到 10 - 50 之间的所有质数的拆分方案运行时间为 27s。 // solve_it_by_tip(); // 完全靠实时回溯获得拆分方案,然后尝试拼接,剪枝阈值使用非最优方案的 // 纸片数。使用此方法在我的笔记本上 (Intel Core2 T5200 1.60GHz, // 2.0GiB 内存) 运行了半个多小时才得到 10 - 50 之间质数的拼接方案。 // solve_it_by_hard_work(); } } #ifdef DEBUG_MODE cout << "TIME ELAPSED: " << (clock() - start) / CLOCKS_PER_SEC << " s." << endl; #endif return 0; }



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值