题目:
=================================================================================
描述如上图所示,由正整数1, 2, 3, ...组成了一棵无限大的二叉树。从某一个结点到根结点(编号是1的结点)都有一条唯一的路径,比如从10到根结点的路径是(10, 5, 2, 1),从4到根结点的路径是(4, 2, 1),从根结点1到根结点的路径上只包含一个结点1,因此路径就是(1)。对于两个结点x和y,假设他们到根结点的路径分别是(x 1, x 2, ... ,1)和(y 1, y 2, ... ,1)(这里显然有x = x 1,y = y 1),那么必然存在两个正整数i和j,使得从x i 和 y j开始,有x i = y j , x i + 1 = y j + 1, x i + 2 = y j + 2,... 现在的问题就是,给定x和y,要求x i(也就是y j)。 输入 输入只有一行,包括两个正整数x和y,这两个正整数都不大于1000。 输出 输出只有一个正整数x i。 样例输入 10 4 样例输出 2 =================================================================================
代码:
#include <iostream> #include <vector> using namespace std; int main() { vector<int> v1, v2; int x, y; cin >> x >> y; while(x != 0) { v1.push_back(x); x = x / 2; } while(y != 0) { v2.push_back(y); y = y / 2; } vector<int>::size_type i = v1.size() - 1, j = v2.size() - 1; for(; i >= 0 && j >= 0; i--, j--) { if(v1[i] == v2[j]) continue; else { cout << v1[i + 1] << endl; break; } } return 0; }