系统要求进行SQL优化,对效率比较低的SQL进行优化,使其运行效率更高,其中要求对SQL中的部分in...

系统要求进行SQL优化,对效率比较低的SQL进行优化,使其运行效率更高,其中要求对SQL中的部分in/not in修改为exists/not exists

 

修改方法如下:

in的SQL语句

SELECT id, category_id, htmlfile, title, convert(varchar(20),begintime,112) as pubtime
FROM tab_oa_pub WHERE is_check=1 and
category_id in (select id from tab_oa_pub_cate where no='1')
order by begintime desc

修改为exists的SQL语句
SELECT id, category_id, htmlfile, title, convert(varchar(20),begintime,112) as pubtime
FROM tab_oa_pub WHERE is_check=1 and
exists (select id from tab_oa_pub_cate where tab_oa_pub.category_id=convert(int,no) and no='1')
order by begintime desc

 

分析一下exists真的就比in的效率高吗?

 

    我们先讨论IN和EXISTS。
    select * from t1 where x in ( select y from t2 )
    事实上可以理解为:
    select *
      from t1, ( select distinct y from t2 ) t2
     where t1.x = t2.y;
    ——如果你有一定的SQL优化经验,从这句很自然的可以想到t2绝对不能是个大表,因为需要对t2进行全表的“唯一排序”,如果t2很大这个排序的性能是不可忍受的。但是t1可以很大,为什么呢?最通俗的理解就是因为t1.x=t2.y可以走索引。但这并不是一个很好的解释。试想,如果t1.x和t2.y都有索引,我们知道索引是种有序的结构,因此t1和t2之间最佳的方案是走merge join。另外,如果t2.y上有索引,对t2的排序性能也有很大提高。
    select * from t1 where exists ( select null from t2 where y = x )
    可以理解为:
    for x in ( select * from t1 )
    loop
       if ( exists ( select null from t2 where y = x.x )
       then
          OUTPUT THE RECORD!
       end if
    end loop
    ——这个更容易理解,t1永远是个表扫描!因此t1绝对不能是个大表,而t2可以很大,因为y=x.x可以走t2.y的索引。
    综合以上对IN/EXISTS的讨论,我们可以得出一个基本通用的结论:IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况。

在Oracle SQL中取数据时有时要用到in 和 exists 那么他们有什么区别呢?

1 性能上的比较
比如Select * from T1 where x in ( select y from T2 )
执行的过程相当于:
select *
  from t1, ( select distinct y from t2 ) t2
 where t1.x = t2.y;

相对的

select * from t1 where exists ( select null from t2 where y = x )
执行的过程相当于:
for x in ( select * from t1 )
   loop
      if ( exists ( select null from t2 where y = x.x )
      then
         OUTPUT THE RECORD
      end if
end loop
表 T1 不可避免的要被完全扫描一遍

分别适用在什么情况?
以子查询 ( select y from T2 )为考虑方向
如果子查询的结果集很大需要消耗很多时间,但是T1比较小执行( select null from t2 where y = x.x )非常快,那么exists就比较适合用在这里
相对应得子查询的结果集比较小的时候就应该使用in.

 

阅读更多

没有更多推荐了,返回首页