逆波兰表示法
逆波兰记法中,操作符置于操作数的后面。例如表达“三加四”时,写作“3 4 +”,而不是“3 + 4”。如果有多个操作符,操作符置于第二个操作数的后面,所以常规中缀记法的“3 - 4 + 5”在逆波兰记法中写作“3 4 - 5 +”:先3减去4,再加上5。使用逆波兰记法的一个好处是不需要使用括号。例如中缀记法中“3 - 4 * 5”与“(3 - 4)*5”不相同,但后缀记法中前者写做“3 4 5 * -”,无歧义地表示“3 (4 5 *) −”;后者写做“3 4 - 5 *”。
逆波兰表达式的解释器一般是基于堆栈的。解释过程一般是:操作数入栈;遇到操作符时,操作数出栈,求值,将结果入栈;当一遍后,栈顶就是表达式的值。因此逆波兰表达式的求值使用堆栈结构很容易实现,和能很快求值。
注意:逆波兰记法并不是简单的波兰表达式的反转。因为对于不满足交换律的操作符,它的操作数写法仍然是常规顺序,如,波兰记法“/ 6 3”的逆波兰记法是“6 3 /”而不是“3 6 /”;数字的数位写法也是常规顺序。
代码实现:
package test;
import java.util.Stack;
public class evalRPN {
public static void main(String[] args) {
// String[] tokens = {"2", "1", "+", "3", "*"};
String[] tokens = { "4", "13", "5", "/", "+" };
// evalRPN.evalRPN(tokens);
System.out.println(evalRPN.evalRPN(tokens));
}
public static int evalRPN(String[] tokens) {
Stack<String> stack = new Stack<String>();
for (String s : tokens) {
switch (s) {
case "+": {
int a = Integer.valueOf(stack.pop());
int b = Integer.valueOf(stack.pop());
String c = String.valueOf(a + b);
stack.push(c);
break;
}
case "-": {
int a = Integer.valueOf(stack.pop());
int b = Integer.valueOf(stack.pop());
String c = String.valueOf(b - a);
stack.push(c);
break;
}
case "*": {
int a = Integer.valueOf(stack.pop());
int b = Integer.valueOf(stack.pop());
String c = String.valueOf(a * b);
stack.push(c);
break;
}
case "/": {
int a = Integer.valueOf(stack.pop());
int b = Integer.valueOf(stack.pop());
String c = String.valueOf(b / a);
stack.push(c);
break;
}
default:
stack.push(s);
}
}
return Integer.valueOf(stack.pop());
}
}